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Abstract

We propose rank-based estimation (R-estimators) as a substitute for Gaussian quasi-likelihood and standard semi-
parametric estimation in time series models where conditional location and/or scale depend on a Euclidean parameter
of interest, while the unspecified innovation density is an infinite-dimensional nuisance. Applications include linear
and nonlinear models, featuring either homo- or heteroskedastic conditional distributions (e.g. conditional duration
models, AR-ARCH, discretely observed diffusions with jumps, etc.). We show how to construct R-estimators achieving
semiparametric efficiency at some predetermined reference density while preserving root-n consistency and asymptotic
normality irrespective of the actual density. Contrary to the standard semiparametric estimators (in the style of
Bickel, Klaassen, Ritov, and Wellner), our R-estimators neither require tangent space calculations nor innovation
density estimation. Numerical examples illustrate their good performances on simulated data. A real-data analysis of
the log-return and log-transformed two-scale realized volatility of the USD/CHF exchange rate concludes the paper.

Key words: Autoregressive conditional duration models, Conditional heteroskedasticity, Distribution-freeness,
Discretely observed Lévy processes, Forecasting, R-estimation, Realized volatility, Skew-t family.

1. Introduction

1.1. Gaussian dynamic location-scale models

Dynamic location-scale processes are essential tools in time series econometrics, and have motivated

the study of increasingly diverse and sophisticated classes of discrete- and continuous-time models such as

ARCH, AR-ARCH or AR-LARCH models, AR conditional duration models, or discretely observed diffusions

with jumps. While the probabilistic properties of those models have been studied extensively and in great

details, their statistical analysis is less exhaustive, and still presents several challenges; see, for instance,

Drost et al. (1997), Aı̈t-Sahalia (2006), Zhao (2008), Bibby et al. (2010), and references therein.

Among those challenges is the specification of underlying densities. All models considered in the literature

involve some unobserved driving noise, the density of which is often specified to be Gaussian. Although

Gaussian assumptions are unrealistic in most applications, an all too common belief is that violating them

is essentially harmless, and that Gaussian Quasi-Likelihood (QL) inference methods remain safe and valid

as soon as finite second-order moments exist.1 In particular, QL estimators erroneously are surmised to be

root-n consistent and asymptotically normal under very general conditions.

1Actually, second-order moments are not sufficient, and root-n consistency and asymptotic normality of QL estimators also
require a (uniform) Law of Large Numbers property for dynamic location-scale models, that holds, essentially, under finite fourth
order moments; see Gouriéroux et al. (1984), Bollerslev and Wooldridge (1992), Hall and Yao (2003), Peng and Yao (2003).
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1.2. Semiparametric extensions of Gaussian dynamic location-scale models

The trouble is that dynamic location-scale models are used, mainly, in a financial context where heavy

tails are quite common and innovation processes do not have finite fourth moment. As a result, Gaussian QL

estimators fail to be root-n consistent and asymptotically normal; see e.g. Hall and Yao (2003). Moreover,

even when standard asymptotics (root-n consistency and normality) hold, Gaussian QL estimators yield

good performances only if the actual density is “nearly Gaussian”, and their efficiency2 rapidly deteriorates

in the presence of skewness or excess kurtosis, two characteristics which are quite common in financial data;

see e.g., Engle and Gonzalez-Rivera (1991). Finally, Gaussian QL estimators are highly nonrobust: as shown

in Mancini et al. (2005), they can be severely distorted by a small number of outliers. Those pitfalls have

been stressed by many authors—Linton (1993) for ARCH models, Drost and Klaassen (1997) for GARCH,

Hall and Yao (2003) for heavy-tailed ARCH and GARCH, Drost and Werker (2004) for duration models,

Francq and Zaköıan (2010) for LARCH models, Fan et al. (2014) for GARCH, to quote only a few.

Attempts have been made to replace the Gaussian reference density with some more appropriate pseudo

densities (e.g. Student ones), defining non-Gaussian QL methods (e.g. Engle and Bollerslev (1986)) which

can also feature robustness properties (Lucas (1997)). However, Student-based M-estimators are not Fisher-

consistent under misspecified densities (e.g. non-Student ones), leading to root-n inconsistent estimates.

Moreover, if the degrees of freedom are not kept fixed, the robustness of Student-based M-estimators is lost

(Lucas (1997)).

To palliate the non-standard asymptotics in the absence of finite fourth moment for the innovation term

in ARCH-type models, Hall and Yao (2003) propose a bootstrap approach which allows to recover, under

certain conditions, the asymptotic distribution of the Gaussian QL estimator. Their solution, however, does

not restore root-n consistency, hence does not remedy the lack of rate-optimality of the estimator.

A semiparametric approach, along the standard lines of Bickel et al. (1993)3 under which the innova-

tion density (call it g) remains unspecified, is therefore more realistic and seems highly advisable. Typical

examples of that approach are Linton (1993), Wefelmeyer (1996), Drost et al. (1997), Drost and Klaassen

(1997), and Drost and Werker (2004). Moreover, several examples in financial contexts and new theoretical

developments are available in Fernandes et al. (2007). “Standard” as it may look, that approach, however,

is not without its own difficulties. Not only because of a methodologically and computationally heavy im-

plementation, but also because several distinct semiparametric extensions of the Gaussian model, in general,

are possible: those distinct extensions induce distinct semiparametrically efficient estimators (and distinct

semiparametric efficiency bounds) the validity of which depends on the semiparametric model adopted.

2Namely, their Asymptotic Relative Efficiency (ARE), under the actual density, with respect to the actual efficiency bound.
3The monograph by Bickel et al. (1993) actually is restricted to the case of independent observations; we refer to Drost et al.

(1997) for a detailed exposition in the time series context.
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The following example provides an illustration of the burdens and pitfalls of the standard semiparametric

method.

1.3. A motivating example: discretely observed non-Gaussian Ornstein-Uhlenbeck processes

The Ornstein-Uhlenbeck process Y has dynamics

dYs = −θYsds+ dLs. (1.1)

Instead of the usual assumption that Ls is Brownian motion (which leads to Gaussian AR-type discretely

observed processes), let us assume, more generally, that Ls is some Lévy process. This includes Lévy

processes with jumps, such as compound Poisson processes, which are typically considered in the analysis

of the (realized) volatility of financial assets: see, e.g., Barndorff-Nielsen and Shephard (2001).

Suppose we are given equally spaced discrete-time observations {Y0, Yh, Y2h, ..., Ynh} of Y, where h is the

time lag between two consecutive observations (e.g., h = 1/250 for daily observations). It can be shown that

Yth = m(θ)Y(t−1)h + v(θ)ǫth t ∈ Z, (1.2)

where the ǫth’s are independently and identically distributed, with some probability density g,

m(θ) = exp{−θh}, and v2(θ) = (1 − exp{−2θh})/2θ. (1.3)

In the classical case under which Ls is Brownian motion, ǫth is standard normal, m(θ)Y(t−1)h = E[Yth|Y(t−1)h]

and v2(θ) = Var[Yth|Y(t−1)h] are the conditional mean and variance, respectively, of Yth. Let us call this the

Gaussian case.

In general, both the distribution of the Lévy process Ls and the value of θ enter, in a non trivial way, in

the characterization of the discrete-time innovation density g, thereby generating a complex class of possible

distributions. Several semiparametric extensions of the Gaussian case therefore have been considered in the

literature: they all consider equation (1.2) with m(θ) and v(θ) as in (1.3), and independently and identically

distributed ǫth’s having density g, where either

(i) g is in the family G0 of all nonvanishing densities (g(z) > 0 for all z),

(ii) g is in the family GWef of all densities (Wefelmeyer (1996)) with mean zero, variance one, and finite

moments of order four,

(iii) g is in the family GHKW1 of all densities (Hallin et al. (2000)) with median zero and

∫ −1

−∞

g(z)dz =

∫ 0

−1
g(z)dz =

∫ 1

0
g(z)dz =

∫ ∞

1
g(z)dz = 1/4, or
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(iv) g is in the family GHKW2 of all densities (Hallin et al. (2000)) with median zero and

∫ 0

−∞

g(z)dz =

∫ 1

−1
g(z)dz = 1/2.

Let us call E(i), . . . , E(iv), respectively, the resulting models. Note that model E(i) contains the other three, and

contains all discretized versions of the original process4. The standard Bickel et al. (1993) semiparametric

approach moreover requires g to satisfy some regularity assumptions: g should have finite variance, and

be absolutely continuous, with (almost everywhere) derivative ġ, such that
∫∞

−∞
(ġ(z)/g(z))2g(z)dz < ∞

and
∫∞

−∞
(1 + zġ(z)/g(z))2g(z)dz <∞—namely, g has finite Fisher information for location and for scale.

That standard semiparametric approach can be described in three steps. Step (a) consists in establishing

the so-called ULAN (Uniform Local Asymptotic Normality) property for the fixed-g submodels. Under very

general assumptions on the density g, this property indeed holds here, with a central sequence of the form

∆(n)(θ, g) = − 1√
n

n∑

t=1

{
∂θm(θ)

v(θ)

ġ(ǫth(θ))

g(ǫth(θ))
Y(t−1)h +

∂θv(θ)

v(θ)

(
1 + ǫth(θ)

ġ(ǫth(θ))

g(ǫth(θ))

)}
, (1.4)

where ǫth(θ) := (Yth −m(θ)Y(t−1)h)/v(θ); see Proposition 3.1 for details.5 Step (b) requires the theoretical

derivation of the so-called tangent space projection of ∆(n)(θ, g), which yields ∆∗(n)(θ, g) (the semipara-

metrically efficient, at g and θ, central sequence). Tangent space projections are model-specific, and their

derivation in general is far from trivial. Finally, in step (c) those semiparametrically efficient central se-

quences are to be treated in the same way as ordinary central sequences—that is, in a point estimation

context, essentially, as log-likelihood gradients, yielding estimating equations of the form ∆∗(n)(θ, g) = 0 or

entering the construction of one-step solutions to the latter (see Section 4 for details).

Depending on the semiparametric model adopted, one obtains in step (b) the following results.

(i) For E(i), the dependence on θ of the scale does not bring any information: the model is perfectly

equivalent to an AR(1) model with autoregressive parameter m(θ) and unspecified innovation density.

Those models are well known to be adaptive—that is, their semiparametrically efficient central sequences

coincide (for all g and θ) with their “parametric” central sequences. As a result, we obtain here

∆∗(n)(θ, g) = − 1√
n

n∑

t=1

∂θm(θ)

v(θ)

ġ(ǫth(θ))

g(ǫth(θ))
Y(t−1)h. (1.5)

4There is no guarantee, though, that for every density g in G0 (in GWef, GHKW1, or GHKW2) there exists a Lévy process such
that the discretized version (1.2) of Y has innovation density g.

5Note that the Gaussian QL is obtained as the solution of the Gaussian likelihood equation, here reducing to

∆(n)(θ, φ) =
1√
n

nX

t=1


∂θm(θ)

v(θ)
ǫth(θ)Y(t−1)h +

∂θv(θ)

v(θ)

`
ǫ2th(θ) − 1

´ff
= 0,

where φ as usual stands for the standard Gaussian density.
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(ii) For E(ii), we have

∆∗(n)(θ, g) = − 1√
n

n∑

t=1

{
∂θm(θ)

v(θ)

ġ(ǫth(θ))

g(ǫth(θ))
Y(t−1)h + c−1

g (θ)∂θv(θ)
(
v(θ)(ǫ2th(θ) − v(θ)

)
− µ̂3ǫth(θ)

}

(1.6)

with cg(θ) :=
(
µ̂4 − v2(θ)

)
v(θ) − µ̂2

3, µ̂3 and µ̂4 the empirical moments of order 3 and 4 of the ǫth(θ)’s.

(iii) For E(iii), denoting by Eg(·) expectation under g, we have

∆∗(n)(θ, g) =
1√
n

n∑

t=1

{
∂θm(θ)

v(θ)

ġ(ǫth(θ))

g(ǫth(θ))
[Y(t−1)h − Eg(Y(t−1)h)] (1.7)

+4
∂θv(θ)

v(θ)
g(sgn(ǫth(θ))) sgn(ǫ2th(θ) − 1)

+2
∂θm(θ)

v(θ)
g(0) sgn(ǫth(θ))Eg[Y(t−1)h]

+
∂θm(θ)

v(θ)
[4g(sgn(ǫth(θ))) − 2g(0)] sgn(ǫ2th(θ) − 1) sgn(ǫth(θ))Eg[Y(t−1)h]

}
.

(iv) The result for E(iv), with the same notation and δ :=
∫ 0
−1 g(z)dz −

∫ −1
−∞

g(z)dz, similarly follows:

∆∗(n)(θ, g) =
1√
n

n∑

t=1

{
∂θm(θ)

v(θ)

ġ(ǫth(θ))

g(ǫth(θ))
[Y(t−1)h − Eg(Y(t−1)h)] (1.8)

+4
∂θv(θ)

v(θ)

1
2(g(1) + g(−1)) sgn(ǫ2th(θ) − 1) − δ(g(1) + g(−1)) sgn(ǫth(θ))

1 − 4δ2

+2
∂θm(θ)

v(θ)

g(0) − 2δ(g(1) − g(−1))

1 − 4δ2
sgn(ǫth(θ))Eg(Y(t−1)h)]

+
∂θm(θ)

v(θ)

2(g(1) − g(−1)) − 4g(0)

1 − 4δ2
sgn(ǫ2th(θ) − 1)Eg(Y(t−1)h)]

}
.

This calls for several immediate remarks. First, one directly sees that the semiparametrically efficient

central sequences ∆∗(n)(θ, g) in equations (1.6)-(1.8) are considerably more complicated than ∆(n)(θ, g).

Their derivation, moreover, is model-specific, hence has to be performed on a case-by-case basis. Second,

semiparametrically efficient central sequences depend on g and its derivative ġ, which are both unknown.

For f 6= g, typically, Eg[∆
∗(n)(θ, f)] 6= 0 (violating the so-called Fisher consistency condition), which implies

that estimators based on ∆∗(n)(θ, f) are not root-n consistent. In order to restore root-n consistency, kernel

estimates of both g and ġ have to be computed and plugged-in into ∆∗(n)(θ, g), yielding ∆∗(n)(θ, ĝ(n)), on

which (step (c)) standard semiparametric estimators are based. This implies careful bandwidth selection

and some additional niceties such as sample splitting. Moreover, kernel estimation of g and ġ is unlikely

to produce good results in small and moderately large samples. Third, the semiparametric extensions

considered in (i)-(iv) all are equally plausible, offering little guidelines for choosing any one of them rather

than the other: E(i) is quite general, but does not exploit the dependence on θ of the scale; E(ii) requires
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finite fourth-order moments; E(iii) and E(iv) only require second-order moments, but m(θ) and v2(θ) are

losing their interpretations in terms of conditional mean and variance. On top of that, if the actual model

lies in E(j) but not in E(j′) (j, j′ = (i), . . . , (iv)), the semiparametrically efficient central sequence associated

with E(j′) again is losing Fisher consistency. The choice of the “right” semiparametric extension thus is both

crucial and problematic, the only “riskless choice” being that of E(i).

1.4. R-estimation: an alternative semiparametric approach

1.4.1. Overview

The objective of this paper is to show that another semiparametric approach, based on residual ranks

(the ranks of the ǫth’s), is possible, which avoids the derivation of complicated tangent space projections,

does not require estimating any density function g, and remains valid under minimal regularity assumptions

(those guaranteeing finite Fisher information and ULAN). Moreover, simple data-driven scores (accounting,

for instance, for actual skewness and kurtosis) can be used, allowing for much flexibility in the tuning of

asymptotic performances and improving a lot over the Gaussian methods.

Essentially, our methodology proceeds along the same steps as in the standard semiparametric approach,

with two fundamental differences at step (b). First, a reference density f (rather than the actual density g) is

adopted to derive the central sequence ∆(n)(θ, f). Second, ∆(n)(θ, f) is projected onto the σ-field generated

by the ranks of the ǫth’s (rather than projected along the tangent spaces). So, in a nutshell, our method

consists in the following three steps: (a’) establishing ULAN, with central sequence ∆(n)(θ, g), for all g ∈ G
(where G ⊂ G0 contains all densities satisfying the regularity assumptions required for ULAN to hold);

(b’) choosing some reference f ∈ G and projecting ∆(n)(θ, f) onto the σ-field generated by the ranks

of the ǫth’s—thus obtaining the so-called rank-based central sequence ∆
˜

(n)(θ, f); (c’) based on ∆
˜

(n)(θ, f)

rather than ∆∗(n)(θ, ĝ(n)), constructing a root-n consistent and asymptotically normal one-step6 R-estimator.

The resulting R-estimators offer a number of advantages. Essentially, and irrespective of the choice of f ,

their validity (root-n consistency and asymptotic normality) extends to any density g in G. In particular,

in sharp contrast with Gaussian QL estimators, no finite moments are required beyond those ensuring finite

Fisher information (see e.g. Drost and Klaassen (1997) for ARCH-type processes under Cauchy innova-

tions or, in a slightly different context, Hallin et al. (2013) for R-estimation of regression under arbitrary

stable noise); moreover, unlike standard semiparametric estimators, no estimation of the actual innovation

density g is necessary. Performances (under g), of course, depend on the selected reference density f : the

“closer” to g, the better. The choice of f can be made by the econometrician according to her/his pref-

erences or past experience; it also can be data-driven as soon as it only depends on the order statistic of

6For a general description of one-step estimators, see, for instance, Section 5.7 of van der Vaart (1998).
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the ǫth’s. For instance, letting f = ĝ(n), where ĝ(n) is a kernel estimator of g, yields an R-estimator which

is semiparametrically efficient under any g ∈ G, thus matching the performance of standard semiparametric

estimation in the Bickel et al. style; contrary to the latter, it does not require sample splitting, tough,

thanks to the independence between the ranks and the order statistic. Computationally less demanding

choices, avoiding kernel density estimation, are also possible; for instance, a data-driven reference density f

belonging to the family of skew-t densities can be obtained by estimating (via skew-t maximum likelihood)

a degree of freedom and a skewness coefficient. Although the resulting f does not attempt to recover the

actual g, it does account for its skewness and kurtosis; see Section 4.3 for details.

Finally, in many cases (like e.g. the AR process applied in the motivating example), the R-estimator

associated with a standard Gaussian reference density (that is f = φ) uniformly outperfoms the Gaussian

QL estimator (the so-called Chernoff-Savage property discussed in Hallin (1994)).

Other attempts have been made to introduce R-estimation in the context of time series models: see,

among others, Koul and Saleh (1993), Koul and Ossiander (1994), Terpstra et al. (2001), Mukherjee and Bai

(2002), Mukherjee (2007), Andrews (2008, 2012). The estimators developed there, however, mostly apply to

ARMA models. Moreover, they rely on an extension of the method introduced by Jaeckel (1972) for linear

regression with independent observations. Contrary to the original Hodges and Lehmann (1956) definition,

Jaeckel’s R-estimators are based on somewhat hybrid objective functions which combine the residual ranks

and the residuals themselves. In the time series settings considered in this paper, Jaeckel-type objective

functions do not follow from any solid decision-theoretic invariance argument, and their equivalence to the

Hodges-Lehmann approach is unlikely to hold. In contrast to the latter, our R-estimators are genuinely

rank-based (measurable with respect to the σ-field generated by the ranks)7, and have a clear link with

invariance, hence with semiparametric efficiency: see Hallin and Werker (2003).

1.4.2. A motivating example (continued)

We conclude the motivating example of Section 1.3 by showing how our rank-based procedures apply

and yield a root-n consistent and asymptotically normal estimator of the parameter θ in (1.1), even in the

presence of misspecified innovation density (f 6= g). The central sequence (1.4), at reference density f with

cumulative distribution function F , takes the form (writing ǫt(θ) for ǫth(θ) := (Yth −m(θ)Y(t−1)h)/v(θ))

∆(n)(θ, f) =
1√
n

[
c1(θ)

n∑

i=1

ḟ(ǫth(θ))

f(ǫth(θ))
Y(t−1)h + c2(θ)

n∑

t=1

(
1 + ǫth(θ)

ḟ(ǫth(θ))

f(ǫth(θ))

)]
,

7Allal et al. (2001) also propose genuinely rank-based estimators, but they overlook the cross-information problem. We are
addressing this issue in C, which contains Assumption (G).
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with

c1(θ) =

√
2h exp{−θh}

((1 − exp{−2θh})/2θ)1/2
and c2(θ) =

1 − exp{2θh} + 2θh

2θ(1 − exp{2θh}) .

Using the standard representation of Y(t−1)h as a sum of past shocks and projecting that central sequence

onto the ranks, we obtain

∆
˜

(n)(θ, f) =
√
n

n−1∑

i=1

exp{−θh(i− 1)}r
˜

(n)
f,i with r

e
(n)
f,i =

1

s(n)




1

n− i

n∑

t=i+1

ḟ

(
F−1

(
R

(n)
t

n+1

))

f

(
F−1

(
R

(n)
t

n+1

)) F−1

(
R

(n)
t−i

n+ 1

)
−m(n)


 ,

where R
(n)
t denotes the rank of ǫ

(n)
th (θ) among ǫ

(n)
h (θ), . . . , ǫ

(n)
nh (θ), and m(n) and s(n) are exact standardizing

constants8; see Section 3.3 and Section 5.2 for details. In the particular case of a Gaussian reference

density, r
˜
(n)
f,i , for f = φ, takes the form of a van der Waerden autocorrelation coefficient 9

r
˜
(n)
vdW;i :=

[
1

n− i

n∑

t=i+1

Φ−1

(
R

(n)
t

n+ 1

)
Φ−1

(
R

(n)
t−i

n+ 1

)
−m

(n)
vdW

](
s
(n)
vdW

)−1
,

where m
(n)
vdW, being o(n−1) can be omitted and s

(n)
vdW = 1

n

∑n
j=1

(
Φ−1

(
j

n+1

))2
+ O(n−1) can be replaced

with 1
n

∑n
j=1

(
Φ−1

(
j

n+1

))2
as ∆
˜

(n) only needs to be defined up to oP(1) quantities.

The major advantage of ∆
˜

(n)(θ, f) over ∆(n)(θ, f) is that its Fisher consistency is robust to misspec-

ification: while ∆(n)(θ, f) does not have expectation zero under density g unless f = g, the expectation

of ∆
˜

(n)(θ, f) remains zero for f 6= g; hence estimators derived from ∆
˜

(n)(θ, f), contrary to those derived

from ∆∗(n)(θ, g), remain root-n consistent and asymptotically normal even if f 6= g.

1.5. Outline of the paper

In Sections 2 through 5, we provide a precise description of our method, and illustrate its implementation

in a variety of widely-applied econometric models. Section 6 presents the outcomes of several numerical

exercises. First, in the context of normal variance-mean mixture models for return and realized volatility

dynamics, we conduct a comparative analysis of the asymptotic relative efficiencies, with respect to QL

estimators, of various R-estimators. Then, we perform a Monte Carlo study of several estimators of an

ARCH(1) model under skew and leptokurtic g’s, providing numerical evidence that rank-based procedures do

improve on the accuracy of traditional Gaussian QL methods. Finally, in Section 7, a real-data analysis about

8Since the vector of ranks, under parameter value θ and irrespective of the actual density (be it g or f), is uniformly distributed
over the n! permutations of (1, . . . , n), those quantities do not depend on g and are easily computed: see (2.8) and (2.9) in
Hallin and Mélard (1988) for explicit values. Also note that the ranks of ǫth(θ) coincide with those of ǫ†th(θ) = Yth−m(θ)Y(t−1)h;
see Example (d) in Section 5.2 for a similar argument.

9As usual, Φ stands for the standard normal distribution function.
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modeling and forecasting of log-return and log-transformed realized volatility in the USD/CHF exchange

rate brings evidence that the forecasts obtained from our rank-based method outperform the classical ones,

based on the routinely-applied Gaussian QL approach. Section 8 concludes. Proofs and technical details

are concentrated in A, B and D.

2. Model setting and main assumptions

2.1. General setting

Let Y(n) := (Y−q+1, . . . , Y0, Y1, . . . , Yt, . . . , Yn) be the finite realization of some stationary real-valued

discrete-time process Y := {Yt; t ∈ Z} satisfying

Yt = m(Yt−1,θ) + v(Yt−1,θ)εt (2.1)

with Yt−1 := (Yt−1, . . . , Yt−q). The functions y 7→ m(y,θ) and y 7→ v(y,θ), y ∈ R
q, are specified and depend

on some unknown p-dimensional real parameter θ = (θ1, . . . , θp)
′ of interest; {εt; t ∈ Z} is an independently

and identically distributed (i.i.d.) process with unspecified (within some family G) density g; εt and Yt′ are

mutually independent for all t > t′.

Equation (2.1), along with a family G of densities, characterizes a semiparametric extension of the Gaus-

sian model where the εt’s are i.i.d. standard normal. We have shown, in Section 1.3, how different (and

mostly arbitrary) choices of G may lead to different tangent space projections and definitions of semipara-

metric efficiency; in the sequel, although semiparametric efficiency is not emphasized, we only consider for G
the most general choice G0 of the family of all nonvanishing densities over the real line.

The interpretation of m(y,θ) and v(y,θ) depends on g: if g is assumed to have mean zero and variance

one, then m(y,θ) is the mean, and v(y,θ) the standard error, of Yt conditional on Yt−1 = y; this is the

traditional specification, in which g is required to have finite moments of order two. Moment assumptions

can be avoided, however, if g, for instance, is assumed to have median zero and interquartile range one;

then m(y,θ) is the median, and v(y,θ) the interquartile range, of Yt conditional on Yt−1 = y. With

obvious notation, model equation (2.1) also generalizes into Yt = m(Yt−1,Xt,θ) + v(Yt−1,Xt,θ)εt in order

to accommodate the presence of exogenous covariates Xt. For the sake of notational simplicity, we do not

pursue with this, but all results below straightforwardly extend to that case.

2.2. Assumptions and notation

Throughout, we assume that the functions m and v in (2.1) are specified, but not the parameter of

interest θ nor the density g. Denoting by P
(n)
θ,g the joint distribution, under (2.1), of Y(n), we thus consider

the (sequence of) semiparametric models P(n) = {P(n)
θ,g : θ ∈ Θ, g ∈ G}, n ∈ N, where Θ and G are such that

9



the following assumptions (Assumptions (A) and (B), but also Assumptions (C)-(D), see Section 3.1) hold

for any θ ∈ Θ and g ∈ G.

Assumption (A). The functions θ 7→ m(y,θ) and θ 7→ v(y,θ) are differentiable for all y, with gradients

ṁ(y,θ) := gradθm(y,θ) and v̇(y,θ) := gradθ v(y,θ). Moreover, denoting by Eθ,g expectations under P
(n)
θ,g,

both Eθ,g[ṁ(Yt−1,θ)] and Eθ,g[v̇(Yt−1,θ)] exist and are finite.

Assumption (B). (B1) For all x ∈ R, the density g(x) is strictly positive.

(B2) The mapping x 7→ g(x) is absolutely continuous on finite intervals, i.e. there exists an a.e. derivative ġ

such that, for all −∞ < a < b <∞, g(a) − g(b) =
∫ b
a ġ(x)dx.

(B3) Letting φg(x) := −ġ(x)/g(x) and ψg(x) := xφg(x) − 1, the Fisher information for location I1(g) :=
∫

R
φ2

g(x)g(x)dx and the Fisher information for scale I2(g) :=
∫

R
ψ2

g(x)g(x)dx exist and are finite. Cauchy-

Schwarz then implies that I12(g) = I21(g) :=
∫
xφ2

g(x)g(x)dx also exists and is finite.

For given g ∈ G and θ ∈ Θ, let H(n)
θ,g denote the simple hypothesis {P(n)

θ,g} and write H(n)
θ

for the

nonparametric collection {P(n)
θ,g : g ∈ G}. Denote by

Zt(θ) := (Yt −m(Yt−1,θ))/v(Yt−1,θ) (2.2)

the residuals associated with the parameter value θ. Clearly, the hypotheses H(n)
θ

and H(n)
θ,g hold true iff the

residuals Zt(θ) are i.i.d. and iff they are i.i.d. with density g, respectively.

3. Uniform local asymptotic normality and ranks

In this section, we introduce the main methodological tools to be used in the sequel. First, we establish

the uniform local asymptotic normality (ULAN), with central sequence ∆(n)(θ, g), of the parametric fixed-g

submodels P(n)
g := {P(n)

θ,g : θ ∈ Θ}. Then, we project ∆(n)(θ, g) onto the σ-algebra generated by the ranks

of the residuals Zt(θ).

3.1. Uniform local asymptotic normality (ULAN)

Defining

∆(n)(θ, g) := n−1/2
n∑

t=1

l̇(Zt,Zt−1,θ, g) and Γ(θ, g) := Eθ,g

[
l̇(Zt,Zt−1,θ, g)l̇

′
(Zt,Zt−1,θ, g)

]
, (3.1)

where

l̇(Zt,Zt−1,θ, g) :=
v̇(Yt−1,θ)

v(Yt−1,θ)
ψg(Zt(θ)) − ṁ(Yt−1,θ)

v(Yt−1,θ)
φg(Zt(θ)), (3.2)

we make the additional assumption

10



Assumption (C). For all θ ∈ Θ and g ∈ G, (i) the matrix Γ(θ, g) exists, is finite and has full rank, and

(ii) the mapping θ 7→ Γ(θ, g) is continuous.

The following ULAN property then follows.

Proposition 3.1. (ULAN) Let Assumptions (A)-(C) hold. For all g ∈ G, the parametric model P(n)
g

is ULAN with central sequence ∆(n)(θ, g) and information matrix Γ(θ, g). More precisely, we have, for

all g ∈ G, all θ ∈ Θ, all θ(n) such that θ(n) − θ = O(n−1/2), and all bounded sequence τn ∈ R
p,

Λn := log
dP

(n)

θ(n)+n−1/2τn,g

dP
(n)

θ(n),g

= τ ′
n∆

(n)(θ(n), g) − 1

2
τ ′

nΓ(θ, g)τ n + oP(1), (3.3)

and ∆(n)(θ(n), g)
L−→ N (0;Γ(θ, g)), under P

(n)

θ(n),g
as n→ ∞.

3.2. Parametric and semiparametric efficiency bounds

The inverse Γ−1(θ, g) of Γ(θ, g) settles the parametric efficiency bound at g—the “best asymptotically

achievable” covariance for a regular estimator of θ in the parametric model where g is specified: an estimator

reaching that bound then can be based on ∆(n)(θ, g) either by solving the likelihood equation ∆(n)(θ, g) =

0, or as a ∆(n)(θ(n), g)-based one-step update of some preliminary root-n consistent estimator θ̂
(n)

(see

Section 4.2 for details).

Parametric efficiency, in general, cannot be reached anymore in the semiparametric model where g

remains unspecified, and the best one can go for is the semiparametric efficiency bound Γ∗−1(θ, g). The

semiparametrically efficient central sequence, denoted as ∆∗(n)(θ, g), is the tool one needs to construct

estimators that reach that semiparametric efficiency bound; see e.g. Newey (1990). The semiparametrically

efficient central sequence is obtained by projecting the central sequence ∆(n)(θ, g) along the so-called tangent

space. We refer to the monograph by Bickel et al. (1993) for a full exposition in the i.i.d. framework and to

Drost et al. (1997) for time series models.

It has been shown in Hallin and Werker (2003) that, for a very broad class of models (including those con-

sidered here), projecting ∆(n)(θ, f) onto the σ-field generated by the ranks of the residuals Z1(θ), . . . , Zn(θ)

(projection here is to be understood as conditional expectation) yields a rank-based, hence distribution-free,

version ∆
˜

(n)(θ, f), say, of the semiparametrically efficient central sequence ∆∗(n)(θ, f). Namely, under P
(n)
θ,f ,

∆
˜

(n)(θ, f) − ∆∗(n)(θ, f) = oP(1). (3.4)

Obviously, Ef [∆
˜

(n)(θ, f)] = 0 (expectation of a conditional expectation). The distribution-freeness of

ranks then entails that also Eg[∆˜
(n)(θ, f)] = 0 (Fisher consistency) for any g: therefore, estimators based

on ∆
˜

(n)(θ, f) unlike those based on ∆∗(n)(θ, f), remain root-n consistent under any P
(n)
θ,g. Those estimators
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are reaching the semiparametric efficiency bound associated with f if g and f coincide—we say that they

are semiparametrically efficient at f .

3.3. Rank-based central sequence

Let us provide some details on the rank-based approach just described. The reader can find the techni-

calities (along with Assumptions (D) and (E)) in B, while several illustrations are available in Section 5.

Let f ∈ G be a chosen reference density, with distribution function F . Denote by R(n)(θ) the vec-

tor (R
(n)
1 (θ), . . . , R

(n)
n (θ)) of residual ranks, where R

(n)
t (θ) is the rank of Z

(n)
t (θ) among Z

(n)
1 (θ), . . . , Z

(n)
n (θ).

For notational convenience, dropping the dependence on θ or n, we also write R(n), R
(n)
t and Z

(n)
t , or R(θ),

Rt(θ) and Zt(θ) when no confusion is possible.

The rank-based central sequences ∆
˜

(n)(θ, f) we eventually will work with are very simply obtained under

the so-called approximate score form (see Hallin and Werker (2003) and reference therein). Approximate

score forms are derived by substituting F−1(Rt/(n + 1)) for Zt in ∆(n)(θ, f). An intuitive and heuristic

justification of this method is that, when Z1, . . . , Zn are i.i.d., with nonvanishing density f , hence strictly

monotone increasing distribution function F , then R
(n)
t /(n + 1) ≈ F (Zt), so that Zt ≈ F−1(R

(n)
t /(n + 1)),

where F (Z1), . . . , F (Zn) are i.i.d., uniform over [0, 1].

However, in order to derive ∆
˜

(n)(θ, f), we first need rewriting the central sequence ∆(n)(θ, f) as a

function of the present and a finite number sn (sn → ∞ as n→ ∞) of past residuals. Then, we consider the

approximation l̇
sn

(Zt,Z
sn
t−1,θ, f) of l̇(Zt,Zt−1,θ, f) which is obtained by replacing Zt−1 with the truncated

version Zsn
t−1 := (Zt−1, . . . , Zt−min(t−1,sn), 0, 0, . . .). This approximation is possible in most stationary Markov

processes of order p and q-dependent processes—see Section 5. Finally, denoting by B(n)(θ) the σ-field

generated by R(n)(θ), we define

∆
˜

(n)(θ, f) := Eθ,f

[
∆(n)(θ, f)

∣∣B(n)(θ)
]

=
1√
n

n∑

t=1

Eθ,f

[
l̇
sn

(Zt,Z
sn
t−1,θ, f)

∣∣B(n)(θ)
]
, (3.5)

and

Eθ,f

[
l̇
sn

(Zt,Z
sn
t−1,θ, f)

∣∣B(n)(θ)
]
≈ l̇

sn

(
F−1

(
R

(n)
t

n+ 1

)
, . . . , F−1

(
R

(n)
t−s

n+ 1

)
,θ, f

)

Since ∆
˜

(n)(θ, f) is R(n)(θ)-measurable, it is distribution-free: let Γ
˜

(n)(θ, f) be its covariance matrix un-

der H(n)
θ

(that matrix only depends on θ). The following result then follows, with minor changes, from

Proposition 3.1, Corollary 3.2, and Proposition 3.3 in Hallin and Werker (2003).

Proposition 3.2. Let Assumptions (A)-(E) be satisfied. Denote by ∆∗(n)(θ, f) a semiparametrically effi-
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cient central sequence for P(n)
f , and by Γ∗(n)(θ, f) its covariance matrix under P

(n)
θ,f . Then,

∆
˜

(n)(θ, f) − ∆∗(n)(θ, f) = oP(1) under P
(n)
θ,f , and lim

n→∞
Γ
˜

(n)(θ, f) = lim
n→∞

Γ∗(n)(θ, f) =: Γ∗(θ, f),

where Γ∗(θ, f) is the semiparametric information matrix (at density f).

The asymptotic equivalence, under P
(n)
θ,f , of ∆∗(n)(θ, f) and ∆

˜
(n)(θ, f) implies that the latter can be

considered a rank-based version of the same semiparametrically efficient (at f) central sequence. In the

sequel, for the sake of simplicity, we call ∆
˜

(n)(θ, f) a rank-based central sequence instead of a rank-based

semiparametrically efficient (at f) central sequence. Unlike its traditional counterpart, the rank-based

central sequence does not require the nontrivial exercise of deriving the tangent spaces and corresponding

projections.

4. R-estimation

4.1. Estimating equations

We now explain how the rank-based central sequences ∆
˜

(n)(θ, f) obtained in the previous section can

be used in the construction of R-estimators. As a test statistic, the quadratic form

Q
˜

(n)
HL (θ0, f) := ∆

˜
(n)′(θ0, f)Γ∗−1(θ0, f)∆

˜
(n)(θ0, f)

provides a test of the null hypothesis θ = θ0 (with unspecified g); that test is is locally and asymptotically

optimal against θ 6= θ0 alternatives with density f . Therefore, it would be natural to define an R-estimator

of θ as the minimizer, with respect to θ, of Q
˜

(n)
HL (θ, f) := ∆

˜
(n)′(θ, f)Γ∗−1(θ, f)∆

˜
(n)(θ, f). Despite its simplic-

ity and intuitive appeal, this definition, which in a much simpler context goes back to Hodges and Lehmann

(1956), often runs into serious numerical difficulties. The non-convex form of θ 7→ Q
˜

(n)
HL (θ, f) indeed re-

sults in practical implementation problems such as multiple solutions and local minima, especially when the

dimension of the parameter θ gets large.

Those difficulties have been avoided, in the context of linear models with independent observations, by

Jaeckel (1972) who observed that the minimizer of Q
˜

(n)
HL (θ, f) is asymptotically the same as that of another

quadratic form, Q
˜

(n)
J (θ, f), which involves residual ranks but also the residuals themselves. Jaeckel’s method,

unfortunately, does not extend readily to the present context, since its statistical justification (asymptotic

equivalence with Hodges and Lehmann’s) does not hold anymore. Instead, we consider here a one-step

version of the minimization of Q
˜

(n)
HL (θ, f), inspired from Le Cam’s one-step estimation method.
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4.2. One-step R-estimators

Let θ̂
(n)

and Γ̂
(n)

f denote an arbitrary root-n consistent (under P
(n)
θ,f ) estimator of θ and a consistent

estimator of Γ∗(θ, f), respectively. Assume moreover that θ̂
(n)

is asymptotically discrete10, that is, only

takes a finite number of values in balls of radius cn−1/2 (c > 0) centered at θ.

Our one-step R-estimation method is based on the following result, the proof of which readily follows from

standard results (see, e.g., Chapter 6 of LeCam and Yang (1990)) and (since part (iii) of Assumption (F),

under g = f , follows from ULAN) can be considered a particular case of Proposition 4.2.

Proposition 4.1. Let Assumptions (A)-(E) hold. The one-step R-estimator

θ
˜

(n)
f := θ̂

(n)
+ n−1/2

(
Γ̂

(n)

f

)−1
∆
˜

(n)(θ̂
(n)
, f) (4.1)

under P
(n)
θ,f root-n consistent and asymptotically normal, with n1/2(θ

˜
(n)
f − θ)

D−→ N
(
0,Γ∗−1(θ, f)

)
.

It follows that the R-estimator θ
˜

(n) in (4.1) is semiparametrically efficient under density f .

Next, in the general case where the reference density f does not necessarily match the actual one g,

consider the following assumption.

Assumption (F). Under P
(n)
θ,g, as n→ ∞,

(i) θ̂
(n)

is a root-n consistent and asymptotically discrete estimator of θ,

(ii) Γ̂
(n)

f is a consistent estimator of the cross-information matrix

Γ(θ, f, g) := lim
n→∞

Eθ,g

[
∆
˜

(n)(θ, f)
(
∆
˜

(n)(θ, g)
)′]

, (4.2)

(in Section C, we explain how to construct such estimators), and

(iii) g is such that (asymptotic linearity) ∆
˜

(n)(θ + n−1/2τ , f) −∆
˜

(n)(θ, f) = −Γ(θ, f, g)τ + oP(1).11

We then have, for the one-step R-estimator (4.1), the following result (see A for a proof):

Proposition 4.2. Let Assumptions (A)-(F) hold. Then, under P
(n)
θ,g,

n1/2
(
θ
˜

(n)
f − θ

) D−→ N
(
0,Γ−1(θ, f, g)Γ∗(θ, f)Γ−1(θ, f, g)

)
.

Proposition 4.2 implies that θ
˜

(n)
f remains root-n consistent for any (f, g) such that part (iii) of Assump-

tion (F) holds; in that sense, thus, unlike most M- and L-estimators, our R-estimators are robust to model

misspecification.

10Asymptotic discreteness is easily obtained via discretization. It should be insisted, however, that such discretization is only

required in the statement and proof of asymptotic properties. In applications, there is no point in implementing it: indeed, θ̂
(n)

in practice always has a finite number of digits; see pages 125 and 188 of LeCam and Yang (1990).
11Note that, for f = g, Γ(θ, f, f) = Γ∗(θ, f) = Γ∗(θ, g).
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4.3. Implementation issues

4.3.1. Choosing a preliminary estimator

A possible candidate for θ̂
(n)

in part (i) of Assumption (F)—provided that one is willing to assume finite

fourth-order moments—is the Gaussian QL estimator. More robust alternatives are highly recommended,

though, such as the LAD estimator of Peng and Yao (2003) for ARCH and GARCH-type models, the non-

Gaussian QL estimator introduced in Fan et al. (2014) or, in the presence of outliers and data contamination,

the bounded-influence estimators by Mancini et al. (2005).

Clearly, different preliminary estimators yield different R-estimators. That impact is limited, though. In

practice, indeed, the one-step update of θ̂
(n)

is to be iterated (θ
˜

(n)
f being used as the preliminary estimator

in a further one-step update) until it stabilizes numerically. Such iterations do not modify the asymptotic

behavior of the R-estimator, but they do improve on its finite-sample performances: this is in accordance

with traditional Newton-Raphson practice. Numerically, the iterations are roughly equivalent to solving–

locally rather than globally–the Hodges-Lehmann estimating equation (see Section 4.1); the role of θ̂
(n)

thus

essentially consists in selecting an initial value in a root-n neighborhood of the actual value of θ.

4.3.2. Choosing the score (the reference density): a data-driven approach

While the choice of the reference density f has no impact on the consistency properties of the corre-

sponding R-estimator, it has a direct influence on its performances, both for finite n as for n → ∞; the

“closer” f is to the actual density g, the better the performance for θ
˜

(n)
f . The efficiency loss due to a

misspecified reference density f is revealed though an inspection of the (f, g)-cross-information quantities

and their comparison with the corresponding g-information ones.

An important advantage of R-estimation over all other methods is that the selection of f can be data-

driven as long as it is based on the order statistic of the residuals. The ranks and the order statistic indeed

are mutually independent, which implies that the asymptotic results on the behavior of rank-based statistics

remain conditionally (on the order statistic) valid: order statistic-driven scores therefore can be treated as

if they were deterministic and not bearing any relation to the observations.

Asymptotically optimal choices of f , in that respect, are the many possible (order statistic-based) kernel

estimators of g—which moreover do not require any sample-splitting precautions. As already explained,

such choice is of theoretical rather than practical interest, and the fact that estimating g is compulsory in

the standard semiparametric approach of Bickel et al. (1993) is one of its main drawbacks. A distinctive

feature of R-estimators is the possibility of a much more flexible selection of f . For instance, in the spirit of

Dodge and Jurečková (2000), we propose selecting f by fitting a parametric density to the (order statistic

of the) residuals associated with the preliminary estimator. If skewness and kurtosis are to be accounted

for, a convenient family of densities is the family of skew-t distribution (Azzalini and Capitanio, 2003) with
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densities of the form

hωωω(x) =
2

σ
tν(z)Tν+1

(
αz
( ν + 1

ν + z2

)1/2)
for x ∈ R and z := σ−1 (x− µ), (4.3)

indexed by ωωω := (µ, σ, α, ν), where µ ∈ R is a location, σ ∈ R
+
0 a scale, α ∈ R a skewness parameter,

and ν > 0 the number of degrees of freedom governing the tails; tν(z) and Tν(z) are the density and

cumulative distribution functions, respectively, of the traditional Student distribution with ν degrees of

freedom; see Hallin and Mehta (2015).12 Other parametric families of course can be considered, very much

in the same way, such as the stable family (as in Hallin et al. (2013)), or the so-called skew generalized error

family (see e.g. Hansen et al. (2007)).

4.3.3. Estimation of cross-information quantities

Part (ii) of Assumption (F), dealing with the estimation of the cross-information matrix Γ(θ, f, g) in (4.2),

is discussed in C, where an easy-to-implement estimator is proposed.

5. Theoretical examples

The derivation of the rank-based central sequence is pivotal for our method. In this section we explain

how to derive ∆
˜

(n)(θ, f) in some widely-applied econometric models.

5.1. Discrete-time models

5.1.1. Conditional heteroskedasticity models

(a) ARCH(q). Consider the class of models with dynamics of the form

Yt =
(
1 +

q∑

j=1

θjY
2
t−1

)1/2
ǫt, (5.1)

where the ǫt’s are i.i.d. with standardized (with mean zero and variance one) density g, θj > 0 for j = 1, ..., q,

and
∑q

j=1 θj ≤ ρ for some ρ < 1. This model is ULAN, with central sequence

∆(n)(θ, g) =
1√
n

n∑

t=1

ψg (Zt(θ))

1 +
∑q

j=1 θjY 2
t−j




Y 2
t−1

...

Y 2
t−q


 , (5.2)

where θ := (θ1, . . . , θq) and Zt(θ) := Yt/
(
1 +

∑q
j=1 θjY

2
t−1

)1/2
. The definition of a rank-based central

sequence requires, for every t, (Yt−1, . . . , Yt−q) in (5.2) to be expressed in terms of a finite number of past

12By using MLE to estimate the skew-t parameters, we are in fact minimizing the Kullback-Leibler divergence and selcting
the misspecified skew-t density which is the closest to the actual g; see e.g. White (1982) for a related discussion.
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shocks. In Appendix D.1, we show that this is possible via a Volterra series expansion. Here we provide

an alternative heuristic argument. For t = 1, let Z
(n)
1 (θ) = Y1, that is, assume (arbitrarily, but this has

no impact asymptotically) the unobserved initial values Y−q, ..., Y0 to be equal to zero. This yields the

n-tuple Z
(n)
1 (θ), ..., Z

(n)
n (θ), with ranks R

(n)
1 (θ), ..., R

(n)
n (θ). Next consider the problem of a reconstruction

of ∆(n)(θ, f) (f some chosen reference density) based on those ranks. Since, by definition, Y1 = Z
(n)
1 (θ),

set Y
˜1 := F−1(R

(n)
1 (θ)/(n + 1)); start the recurrence

Y
˜ t :=

(
1 +

q∑

j=1

θjY˜
2
t−j

)1/2
F−1

(
R

(n)
t (θ)

n+ 1

)
, t ≥ 2, (5.3)

then define

∆
˜

(n)(θ, f) =
1√
n

n∑

t=1

ψf

(
F−1

(
R

(n)
t (θ)
n+1

))
−m

(n)
f,(2)

1 +
∑q

j=1 θjY˜
2
t−j




Y
˜

2
t−1

...

Y
˜

2
t−q


 (5.4)

where

m
(n)
f,(2) :=

1

n

n∑

i=1

ψf

(
F−1

( i

n+ 1

))
. (5.5)

From the re-centering Lemma 1 in Appendix B.2, it follows that m
(n)
f,(2) is o

(
n−1/2

)
. The asymptotic covari-

ance Γ∗(θ, f) of ∆
˜

(n)(θ, f) under H(n)
θ

(which is also the semiparametric information matrix under H(n)
θ,f )

is of the form I2(f)Υ−1(θ), where the q × q-matrix Υ−1(θ) is the Gaussian information matrix given in

Theorem 2.1 of Kristensen and Rahbek (2005).

(b) AR(p)-LARCH(q). Consider the discrete-time bilinear process with dynamics

Yt =

p∑

j=1

ϑjYt−j +

(
1 +

q∑

l=1

βlYt−l

)
ǫt, (5.6)

where the ǫt’s are i.i.d. with standardized density g, and θ = (ϑ1, ..., ϑp, β1, ..., βq). If the conditions of

Theorem 2.1 in Francq and Zaköıan (2010) are satisfied (see D.2), the ULAN central sequence for θ reads

∆(n)(θ, g) =
1√
n

n∑

t=1

(
1 +

q∑

l=1

βlYt−l

)−1




−φg (Zt(θ))




Yt−1

...

Yt−p




ψg (Zt(θ))




Yt−1

...

Yt−q







. (5.7)
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A rank-based central sequence for reference density f is obtained by replacing, in (5.7), the residual Zt(θ)

by F−1(R
(n)
t (θ)/(n + 1)), for every t.

We illustrate that construction in the AR(1)-LARCH(1) case, with dynamics

Yt = ϑYt−1 + (1 + βYt−1)ǫt t ∈ Z, (5.8)

which is ULAN with central sequence

∆(n)(θ, g) =
1√
n

n∑

t=1


 −φg (Zt)

ψg (Zt)


 Yt−1

1 + βYt−1

where Zt = Zt(θ) := (Yt − ϑYt−1)/(1 + βYt−1).

In D.2, we show how to derive the rank-based central sequence in two steps: (i) an application of the

Volterra series expansion provides a version of the central sequence which depends on a finite number of past

shocks, in which (ii) the replacement of the residuals Zt(θ) by F−1(R
(n)
t (θ)/(n+ 1)) yields ∆

˜
(n)(θ, f). We

provide here an alternative heuristic argument similar to the one developed for the ARCH(q) case. For t = 1,

arbitrarily put Z
(n)
1 (θ) = Y1 and compute the n-tuple Z

(n)
1 (θ), ..., Z

(n)
n (θ), whose ranks areR

(n)
1 (θ), ..., R

(n)
n (θ).

Since Y1 = Z
(n)
1 (θ), define Y

˜ 1 := F−1(R
(n)
1 (θ)/n + 1), and start the recurrence

Y
˜ t := ϑY

˜ t−1 + (1 + βY
˜

2
t−1)F

−1

(
R

(n)
t (θ)

n+ 1

)
, t ≥ 2. (5.9)

Finally, the rank-based central sequence (for reference density f) is

∆
˜

(n)(θ, f) =
1√
n

n∑

t=1




−φf

(
F−1

(
R

(n)
t (θ)
n+1

))
−m

(n)
f,(1)

ψf

(
F−1

(
R

(n)
t (θ)
n+1

))
−m

(n)
f,(2)




Y
˜ t−1

1 + βY
˜ t−1

,

where m
(n)
f,(2) is as in (5.5) and

m
(n)
f,(1) = − 1

n

n∑

i=1

φf

(
F−1

(
i

n+ 1

))
. (5.10)

From the re-centering Lemma 1 in B.2, it follows that both m
(n)
f,(1) and m

(n)
f,(2) are o

(
n−1/2

)
, hence can

be omitted for n large. The asymptotic covariance Γ∗(θ, f) of ∆
˜

(n)(θ, f) under H(n)
θ

, which is also the

semiparametric information matrix under H(n)
θ,f , is of the block-diagonal form


 I1(f)Ip1×p1 0

0 I2(f)Ip2×p2


Υ−1(θ) (5.11)
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where p1 = p, p2 = q, and Υ−1(θ) is the Gaussian information matrix as in Chebana and Läıb (2010).

(c) Autoregressive conditional duration (ACD) models for irregularly sampled data. As in the seminal paper

of Engle and Russell (1998), let Yi denote the duration between some (i − 1)-th and i-th events (e.g., the

time elapsed between two successive transactions of some asset); let Fi−1 denote the information up to

and including event (i − 1), and denote by Ψi−1 := E(Yi|Fi−1) the expected conditional duration. Then,

for θ = (β, γ), define the accelerated time process

Yi = ǫiΨi−1, with Ψi−1 = Ψ(Zi,θ) = 1 + βYi−1 + γΨi−2,

where the ǫi’s are i.i.d., positive, and such that E(ǫi|Fi−1) = 1. Engle and Russell (1998) propose a QL esti-

mation procedure (which in this case is based on an exponential reference density), while Drost and Werker

(2004) introduce the class of semiparametric ACD models (which does not specify any innovation density)

and rely on the standard Bickel et al. semiparametric estimation method. We rather propose here a class

of R-estimators for duration models. First note that the ULAN central sequence for ACD models actually

is that of a dynamic scale model for Yi: it follows from Proposition 3.1 that

∆(n)(θ, g) =
1√
n

n∑

i=1

ψg(Zi(θ))

1 + βYi−1 + γΨi−2


 Yi−1

Ψi−2




where Zi(θ) = Yi/Ψi−1(θ). Similar to the recursion we gave for the ARCH(q) case, arbitrarily putting,

for t = 1, Z
(n)
1 (θ) = Y1 yields Ψ0 = 1 and an n-tuple Z

(n)
1 (θ), ..., Z

(n)
n (θ) whose ranks are R

(n)
1 (θ), ..., R

(n)
n (θ).

Since Y1 = Z
(n)
1 (θ), define Y

˜ 1 := F−1(R
(n)
1 (θ)/n + 1), and start the recurrence

Y
˜ i = Ψ

˜ i−1F
−1(R

(n)
i−1(θ)/n + 1), i ≥ 2 where Ψ

˜ i−1 = 1 + βY
˜ i−1 + γΨ

˜ i−2. (5.12)

Finally, the rank-based central sequence (for reference density f) is

∆
˜

(n)(θ, f) =
1√
n

n∑

i=1

ψf

(
F−1(R

(n)
i (θ)/n+ 1)

)

1 + βY
˜ i−1 + γΨ

˜ i−2


 Y
˜ i−1

Ψ˜ i−2


 ; (5.13)

Lemma 1 in B.2 indeed implies that m
(n)
f,(2) = o

(
n−1/2

)
, hence can be omitted. Since innovations are

nonnegative, typical candidate reference densities here are the Gamma, Weibull, or Burr densities.

5.2. Discretely observed continuous-time models

Affine-jump diffusion processes are pivotal in the financial literature; see, e.g., Singleton (2009, Ch.3).

Their main characteristic is that the conditional cumulant generating function is exponential-affine. As
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a result, the conditional mean and the conditional variance of the discrete-time observed process are also

affine and are known in closed-form. These features can be exploited to derive semiparametric dynamic

location-scale models for the process observed at discrete-time points. The next two examples illustrate this

approach.

(d) Discretely observed mean-reverting jump diffusion. Lévy processes are flexible and widely-applied in

finance, as they are able to capture many features of time series such as fat tails and jumps. Inference on

this class of processes seldom can be conducted using classical likelihood methods, and alternative approaches

need be explored; see, e.g., Bibby et al. (2010) and references therein. In the class of Lévy processes, let us

consider the Poisson-Gaussian process Y, which is solution to equation

dYs = −κYsds+ dWs + dZs, (5.14)

where dWs is standard Brownian motion and dZs = Jsdπ(s), with π a Poisson process with intensity 1, and

i.i.d. N (α, η2) jump sizes Js. The exact first and second conditional moments of Y are available in closed

form, yielding, for the discretely observed n-tuple {Y0, Yh, Y2h, ..., Ynh},

E(Yth|Y(t−1)h) =
αh

κ
(1 − exp{−κh}) + Y(t−1)h exp{−κh} (5.15)

and

Var(Yth|Y(t−1)h) =
1 + η2

2κ
(1 − exp{−2κh}) . (5.16)

That class of models has been considered by Das (2002) in the dynamic analysis of bond markets,

with special focus on the series of Fed funds rates; Das points out that the bond market often overreacts,

i.e., exhibits large moves in the interest rate followed by speedy reversals. The parameter κ measures the

speed of mean reversion, and plays the main role: the half-life τ is a function of κ, being the solution to

exp{−κτ} = 0.5.

Assume the discrete-time process {Yth; t ∈ Z} is observed over n+1 periods, yielding (Y0, Yh, Y2h, . . . , Ynh).

Das’ estimation of κ is essentially based on an approximate version13 of the dynamic location-scale model

Yth =
αh

κ
(1 − exp{−κh}) + Y(t−1)h exp{−κh} +

[
1 + η2

2κ
(1 − exp{−2κh})

]1/2

ǫth (5.17)

13Instead of the exact form (as given in (5.17)) of the conditional first two moments, Das considers a first-order approximation
which follows from the Euler scheme applied to the stochastic differential equation (5.14). As a result, Das’ approximation entails
a bias for the estimated parameter. In contrast, we apply the exact conditional moments and our method does not entail any
bias.
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In Das’ approach, the density g of ǫth is supposed to be standard normal. If that Gaussian assumption is

to be abandoned, several semiparametric extensions of (5.17) are possible. The situation is actually pretty

much the same as in the motivating example of Section 1.3 and, for the same reasons, turning to the residual

ranks appears as the safest attitude.

Model (5.17) with innovation density g satisfying the usual regularity assumptions is ULAN with respect

to θ := (κ, α, η), with central sequence (see (3.2))

∆(n)(θ, g) =
1√
n

n∑

t=1




ψg(Zt)β1(θ) + φg(Zt)κ
2Y(t−1)hβ2(θ) − φg(Zt)β2(θ)β3(θ)

φg(Zt)β4(θ)

ψg(Zt)β5(θ)


 (5.18)

where

Zt = Zt(θ) =
Yth − αh

κ (1 − exp{−κh}) − exp{−κh}Y(t−1)h
[

1+η2

2κ (1 − exp{−2κh})
]1/2

, (5.19)

with (Coth(x) and Sinh(x) as usual stand for the hyperbolic cotangent and sinus of x, respectively)

β1(θ) = 1
2

[
h(Coth(hκ) − 1) − η2

κ(2κ+η2)

]
, β2(θ) = α(1 − exp{hκ} + hκ),

β3(θ) = κ−3/2h exp{−hκ/2}
[(

2κ+ η2
)
Sinh(hκ)

]−1/2
, β4(θ) = h (1 − exp{−hκ})1/2/κ

(
1 + η2

2κ

)1/2
,

and β5(θ) = η/
(
2κ+ η2

)
. Canceling ∆(n)(θ, g) yields M-estimators for θ (which are not necessarily root-n

consistent). Due to the highly nonlinear form of the estimating equations, moreover, numerical implemen-

tation is likely to be problematic, and even more so is the derivation of standard semiparametric estimators

in the Bickel et al. (1993) style.

The R-estimation methods developed here thus naturally enter into the picture. Projecting ∆(n)(θ, f)

(where f is some chosen reference density) onto the space of residual ranks cancels its second and third com-

ponents; as for the first one, the terms involving hyperbolic functions disappear, and only φg(Zt)κ
2Y(t−1)hβ2(θ)

yields a nondegenerate projection. This means that neither α nor η can be estimated at root-n rate when

the density g of ǫth in (5.17) remains completely unspecified. Going back to equation (5.17), this is intu-

itively clear, as α and η only appear in the innovation’s unconditional location and scale, while the ranks are

invariant to location and scale perturbations. For reference density f , the projection onto the σ-algebra of

residual ranks of the component of the central sequence associated with κ thus coincides (up to an irrelevant

multiplicative constant) with that of n−1/2
∑n

t=1 φf (Zt)Y(t−1)h.

More formally, let R
(n)
t (θ) denote the rank of Zt(θ) in (5.19). That rank is the same as the rank R

(n)
t (κ)

of Z†
t (κ) := Yth − exp{−κh}Y(t−1)h. Then, a rank-based central sequence emerges, of the form (up to a
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multiplicative constant and oP(1) terms)

∆
˜

(n)(κ, f) := n1/2
sn∑

i=0

exp{−iκh}(n − i)−1
n∑

t=i+1

(
φf

(
F−1

(R(n)
t (κ)

n+ 1

))
F−1

( R(n)
t−i

n+ 1

)
−m

(n)
f

)
(5.20)

where m
(n)
f := [n(n − 1)]−1

∑
1≤i1 6=i2≤n φf (F−1(i1/n+ 1))F−1(i2/n+ 1), with, under H(n)

θ , asymptotic

variance Γ∗(θ, f) = I1(f)/
(
1 − exp{−2κh}

)
; semiparametric efficiency here refers to the discrete-time

model (5.17) with completely unspecified innovation density g.

Based on (5.20), our method (as described in Section 4) then leads to root-n consistent R-estimators

for κ in the rather sophisticated context of a discretized jump diffusion process where the jump parameters

are treated as nuisance; in that sense, our R-estimators are robust to a misspecification of the jump process.

(e) Discretely observed Cox-Ingersoll-Ross (CIR) process. The CIR process Y is often considered for

short-term interest rates (e.g., the Fed funds rate as in Das (2002)), stochastic volatility (Heston (1993)),

or asset pricing models (Singleton (2009)). It is the solution to the stochastic differential equation

dYs = k(1 − Ys)dt + σ
√
YsdWs. (5.21)

In Chapter 2 of Singleton (2009), a QL estimator for the model parameters in (5.21) is defined setting a

Gaussian dynamic location-scale model for the discrete-time version of Y. In D.4 and D.3, we show how a

semiparametric dynamic location-scale extension leads to a semiparametric AR(1)-ARCH(1) model, whose

rank-based central sequence can be used in the construction of R-estimators.

6. Numerical examples

6.1. Returns and realized stochastic volatilities

In this section, we study the finite-sample performance of several R-estimators in the model

rt = ςtǫt with log ςt = θ1 log ςt−1 + θ2 log ςt−2 + θ3 log ςt−3 + vt, (6.1)

where ςt is a random variable taking values in R
+, {ǫt} is independent standard normal white noise, the vt’s

are i.i.d. with standardized density g, and ǫt is independent of vs for all (s, t).

This model is related to the normal variance mean mixture models which are used in modeling and

forecasting the realized volatility of assets; see, e.g., Bingham and Kiesel (2002), Corsi (2009), Corsi et al.

(2013), and references therein. Before turning to finite-sample performances (see Section 7), let us first

analyze the asymptotic ones, as evaluated by asymptotic relative efficiencies.

Asymptotic performance (AREs). We study here the asymptotic relative efficiencies, in model (6.1),

with respect to the Gaussian QL, of the R-estimators based on van der Waerden (∆
˜

(n)
vdW), Wilcoxon (∆

˜
(n)
W ),
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and Laplace (∆
˜

(n)
L ) rank-based central sequences (associated with normal, logistic and double-exponential

reference densities, respectively); their explicit expressions are given in D.5; the centering and scaling con-

stants m
(n)
f and s

(n)
f are provided explicitly in Hallin and Mélard (1988)—see also Lemma 1 in B.2, which

implies m
(n)
f = o

(
n−1/2

)
.

The performance of all those estimators is typically sensitive to skewness and kurtosis. In order to study

the impact of skewness and leptokurtosis on R- and QL estimators, we are considering here densities g in

the four-parameter family of Johnson’s densities with unbounded support; see Jones and Pewsey (2009) and

Ghysels and Wang (2011). In the sequel, we refer to the general density in this class by JSU(γ, δ, µ, σ), where

γ and δ are skewness and kurtosis parameters, respectively, while µ and σ, as usual, stand for location and

scale. For µ = 0 and σ = 1, suitable values of δ and γ may lead to positive skewness values as large as ten,

and excess of kurtosis larger than eight.

JSU(γ, δ, µ, σ)

Leptokurtic Skewed Leptokurtic and Skewed

ARE γ = 0, δ = 0.85 γ = 0, δ = 1 γ = 3, δ = 10 γ = 10, δ = 10 γ = 3, δ = 1.5 γ = 4, δ = 1

vdW/QL 2.567 1.755 1.002 1.014 2.657 12.341

W/QL 3.245 2.124 0.960 0.968 2.207 7.319

L/QL 3.433 2.033 0.643 0.644 1.234 2.972

Table 1: AREs, under various values of γ and δ, of R-estimators (van der Waerden, Wilcoxon, Laplace) with respect to the
Gaussian QL estimator. The underlying process is the variance mixture model (6.1), with Johnson mean zero and variance one
innovation density JSU(γ, δ, µ, σ).

The asymptotic relative efficiency (ARE) under g of the R-estimator associated with reference density f

with respect to the QL estimator is easily obtained as I2
1 (f, g)/I1(g), with I1(f, g) defined in Section C.2,

and I1(g) := I1(g, g). Results are provided in Table 1.

We emphasize that the AREs displayed in this table are uniform in θ; note that, under leptokurtic

innovation density g (e.g., δ = 0.85 or 1), all R-estimators considered here quite significantly outperform

their QL competitors, whether g is asymmetric or not. Skewness alone, however, has a somewhat limited

impact on AREs. Under skewed and leptokurtic g’s (e.g., γ = 4, δ = 1), the relative performance of

R-estimators is particularly impressive: an ARE value of 12.341 is reached under (γ, δ) = (4, 1).

6.2. Time-varying volatility in the presence of skewness and leptokurtosis

Let us consider the semiparametric ARCH(1) model Yt = (1 + θY 2
t−1)

1/2ǫt, where the i.i.d. ǫt’s have

unspecified density g. For each combination of the two parameter values θ = 0.1 and θ = 0.5, and three
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n = 250 n = 500 n = 1000
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Figure 1: Boxplots for various estimators of θ: (a) Gaussian Quasi-Likelihood estimator (QMLE); (b) skew-t-Maximum Likeli-
hood Estimator (MLE t); (c) R-estimator with QMLE preliminary and data-driven skew-t reference density (R-QMLE skwt);
(d) R-estimator with LAD preliminary and skew-t data-driven reference density (R-LAD skwt)). In each plot the horizontal
red line indicates the true parameter value: the top plots are for θ = 0.1, while the bottom plots are for θ = 0.5. Monte Carlo
size throughout is 2500.

different series lengths n = 250, 500, 1000, we simulated 2500 realizations based on a skew generalized error

density g with mean zero, standard deviation one, shape parameter one, and skewness parameter five; such

densities are increasingly popular in finance (see, e.g., Hansen et al. (2007)). From each realization, we

computed the following estimators of θ: (a) the Gaussian QL estimator (QLE), (b) the skew-t-maximum

likelihood (MLE t), (c) an R-estimator (R-QLE skwt) based on a QLE preliminary, and (d) an R-estimator

(R-LAD skwt) based on a LAD preliminary. Both R-estimators were obtained via data-driven skew-t ref-

erence densities. More precisely, following the method described in Section 4.3.2 skew-t distributions with

location zero and unit scale were fitted to the (order statistics of) residuals via a maximum likelihood

estimation of skewness and degrees of freedom, which accounts for skewness and kurtosis.

In Figure 1 we display the boxplots associated with the four estimators14 just described. We notice

14The computation of rank-based central sequences was based on recursion (5.3), and one-step iterations were performed until
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that, for n = 250 and n = 500, the QLE displays a bias, whereas the R-LAD skwt is essentially centered

about the actual parameter value (both for θ = 0.1 and for θ = 0.5). Since innovations, under our data-

generating scheme, have finite fourth-order moment, the QLE is root-n consistent. This can be observed

for n = 1000, where both the QLE and R-LAD skwt are centered at the actual parameter value, with

R-LAD skwt displaying higher precision (the R-LAD skwt yields a sizeable asymptotic efficiency gain over

the QLE). Moreover, a comparison of the boxplots of R-QMLE skwt with those of R-LAD skwt indicates

that the use of LAD as a preliminary estimator tends to improve on the R-estimator performance when the

sample size is n = 250. However, for the larger sample sizes (n = 500, 1000) the difference is less apparent

(see e.g. the bottom-right panel for n = 1000) and, in line with the asymptotic theory, eventually disappears

as n → ∞. Finally, we notice that the MLE t is severely biased in all settings. Indeed, MLE t is based on

a misspecified reference density which does not meet the Fisher consistency conditions.

7. Empirical analysis: USD/CHF exchange rate

One of the major problems in the analysis of financial time series is the relatively frequent occurrence

of extreme values—a phenomenon rank-based methods, including R-estimation, are less sensitive to than

traditional parametric and semiparametric methods. We illustrate this point with an empirical analysis

of the series of USD/CHF exchange rate daily log-returns and its realized volatility, as measured by the

so-called Two Scales Realized Volatility (TSRV) series, see Aı̈t-Sahalia et al. (2005). Our analysis builds on

the empirical findings of Andersen et al. (2000, 2003).

7.1. Data description

Our dataset consists of tick-by-tick log mid prices over 24 hours of USD/CHF FX rates provided by Olsen

& Associates; log mid prices are computed as averages of the logarithmic bid and ask quotes, obtained from

the Reuters FXFX screen. In order to avoid modeling the seasonal behavior of trading activity induced

by week-ends, we exclude all trades taking place from Friday 21:00 GMT to Sunday 22:00 GMT. From

the high-frequency quotes, we compute (as in Corsi (2009)) TSRV by summing the high-frequency squared

log-returns with slow scale of ten ticks, and daily log-returns as rt = logPt − logPt−1, where Pt is the

daily USD/CHF exchange rate provided by Reuters. We conduct our analysis on the 1993 and 1997 data.

In each year, we use the first 200 observations (from January to end of September) as training data for

model estimation and diagnosis, and the last 50 ones (from October to December) to evaluate forecasting

performances.

the desired numerical stabilization was achieved (9 iterations on average).
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7.2. Modeling and forecasting

7.2.1. Exploratory analysis and modeling

Log-returns. As in Andersen et al. (2000), we consider the dynamics of the process of log-returns rt stan-

dardized by the TSRV, namely rt/TSRVt. The resulting series has approximately mean zero, variance close

to one, and a sample partial correlation analysis with robust standard errors (unreported) does not detect

any predictability. The Shapiro-Wilks test p-values for rt/TSRVt are 0.896 and 0.208 for the 1997 and 1993

data, respectively. Thus, we conclude that a standard normal approximation for the ratios rt/TSRVt is

supported by the data.

Two Scales Realized Volatilities (TSRV and log(TSRV)). Turning to volatilities, we consider the TSRV

process and its log-transformation. Table 2 displays some summary statistics for their unconditional dis-

tributions. The years 1993 and 1997 illustrate different aspects of the data: (i) the 1993 training period

(January-September) exhibits 9 extreme values; we label it as “standard”, and believe it expresses the typ-

ical dynamics of the TSRV; (ii) in 1997, the training period (January-September) shows 7 extreme values,

while the Asian crisis is causing 4 extreme values between October and December (the TSRV strikes 0.3).

We label this period as “non-standard”, since it contains several unfrequent negative volatility shocks re-

lated to a well-identified financial crisis. The log-transformation of the TSRV slightly reduces the number

of extreme observations; however, similar considerations still hold. We model the series of logged TSRVs

by (2.1), assuming an AR specification for the conditional mean and ǫt ∼ g(0, 1). The autocorrelation anal-

ysis (unreported) of the training data suggests that an AR process with no more than three lags is a suitable

model. Thus, we set that the conditional mean of the log(TSRV) is of the form
∑3

j=1 θj log(TSRVt−j).

7.2.2. Estimation and diagnostics

Building on the previous considerations, we set up a normal mean-variance mixture model, of the

form (6.1), with TSRVt playing the role of ςt. We estimate the model parameters from the data in each

training period, and assess the quality of the various estimates—the Gaussian QL, and the van der Warden

(vdW), Wilcoxon (W), and Laplace (L) R-estimators—via their standard errors; the latter are obtained by

estimating the cross-information quantities in the variance matrix as in Section C. Results are displayed in

Table 3.

In the 1993 training data, all estimation methods considered suggest an AR(1) model for the log(TSRVt)

series, while in 1997 the same estimation methods agree on an AR(2) model. Table 3 indicates that the

standard errors of R-estimators in general are smaller than those of QL estimators.

To assess the validity of the fitted models, we consider some standard diagnostics. In Figure 2, we

plot the sample partial autocorrelation of the standardized and squared-standardized residuals, as implied
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1993 1997

TSRV

Jan-Sept Oct-Dec Jan-Sept Oct-Dec

Mean 0.112 0.088 0.094 0.096
SD 0.022 0.018 0.021 0.033
Kurtosis 3.532 2.770 5.662 20.296
q.75 − q.25 0.028 0.024 0.027 0.026
obs ≤ q.50 − 3×MAD 3 0 0 0
obs ≥ q.50 + 3×MAD 7 0 7 4

log(TSRV)

Jan-Sept Oct-Dec Jan-Sept Oct-Dec

Mean -2.206 -2.451 -2.388 -2.375
SD 0.192 0.208 0.217 0.256
Kurtosis 3.421 3.212 3.634 7.982
q.75 − q.25 0.256 0.278 0.298 0.288
obs ≤ q.50 − 3.5×MAD 4 1 2 0
obs ≥ q.50 + 3.5×MAD 3 0 3 2

Table 2: USD/CHF FX rates: descriptive statistics (empirical means, standard errors, kurtoses and interquartile ranges;
numbers of extreme values) for the TSRV (top panel) and log(TSRV) (bottom panel) series, 1993 and 1997. We define as
“extreme” any observation lying outside the region defined by the median plus or minus c1 times the median absolute deviation
(MAD) over the period considered; we set c1 = 3 for the TSRV and c1 = 3.5 for the log(TSRV).

by the Laplace R-estimator for the training period January-September 1993. None of the plots provide

any evidence of autocorrelation outside Bartlett’s two-standard-error bands for white noise. Similar plots

(unreported) are available for the QL estimator and the other R-estimators.

7.2.3. Forecasting

We computed, for each day in the October-December period (still 1993 and 1997), the squared one-day-

ahead prediction errors for each estimator obtained from the corresponding training period.

Table 4 provides some classical (mean and standard deviation) and robust (median and mean absolute

deviation) evaluations of the squared prediction errors. R-estimators (particularly the Laplace ones) appear

to provide more accurate forecasts than the QL estimators, but the improvements, in terms of location and

dispersion, are smaller in the “crisis year” 1997 than in 1993. This is probably due to the extreme values

related to the Asian crisis. Such large values, which are not representative of the actual dynamics, badly

affect prediction errors —less so, however, with rank-based methods than with the traditional QL ones.

8. Conclusions

The new R-estimation methodology developed in this paper is particularly well adapted to the semi-

parametric analysis of the type of complex and nonlinear time series models considered in econometrics and
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1993 1997

QL vdW W L QL vdW W L

θ1 0.2762 0.3204 0.3525 0.4014 0.3719 0.3517 0.3677 0.3921
(0.072) (0.051) (0.070) (0.045) (0.071) (0.063) (0.080) (0.077)

θ2 0.0969 0.0988 0.0768 0.0190 0.1323 0.1586 0.1408 0.1761
(0.074) (0.061) (0.075) (0.048) (0.076) (0.066) (0.085) (0.081)

θ3 -0.0371 -0.0396 -0.0316 0.0008 0.0911 0.0669 0.0606 0.033
(0.073) (0.051) (0.070) (0.045) (0.071) (0.063) (0.080) (0.077)

Table 3: USD/CHF FX rates: inference on log(TSRV). Gaussian QL and R-estimates of θ1, θ2, and θ3 (along with their
estimated standard errors).

Residuals Squared Residuals
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Figure 2: USD/CHF FX rates: diagnostics for the Laplace R-estimator, in the 1993 data. Sample partial autocorrelation of
residuals (left) and squared-residuals (right).

finance, for which a more standard semiparametric approach would be hardly feasible, due to the difficulty of

obtaining the tangent spaces and implementing the corresponding projections, and the required estimation

of innovation densities. Our methodology is flexible (allowing for non-Gaussian and data-driven reference

densities), powerful (quite often, outperforming Gaussian QL estimation), robust (preserving root-n consis-

tency under misspecified densities), and computationally less demanding than the standard semiparametric

method. Our method also represents a substantial contribution to the literature on rank-based inference for

time series, which so far has been focused, mostly, on the simpler problem of rank-based hypothesis testing

for conditionally homoskedastic (and generally linear) models. Indeed, our method is the first one extend-

ing rank-based inference to autoregressive conditional duration models, AR-ARCH models, and discretely

observed affine diffusion processes.
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1993 1997

QL vdW/QL W/QL L/QL QL vdW/QL W/QL L/QL

Mean 0.24 96% 94% 91% 0.17 100% 99% 99%

Median 0.13 97% 99% 88% 0.05 94% 97% 84%

SD 0.38 98% 97% 96% 0.56 100% 100% 98%

MAD 0.11 103% 108% 99% 0.04 96% 98% 90%

Table 4: USD/CHF FX rates: mean, median, standard deviation, and mean absolute deviation for the squared one-day-
ahead prediction errors for both QL and R-estimators. The values for the R-estimators are expressed as proportions of the
corresponding QL values.
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Appendix

A. Proofs

A.1. Proof of Proposition 3.1

Proposition 3.1 follows from Theorem 2.1 in Drost et al. (1997): we just need to check that their Assumptions A-E15 are

satisfied. Specifically,

(a) their Assumption A follows from our Assumption (E);

(b) their Assumption B is a consequence of the location-scale form of (2.1);

(c) setting, for θ̃(n) − θ(n) = O(n−1/2),

W ′
nt(θ̃

(n) − θ
(n)) =

1

v(Yt−1, θ
(n))

“
m(Yt−1, θ̃

(n)) −m(Yt−1, θ
(n)), v(Yt−1, θ̃

(n)) − v(Yt−1, θ
(n))
”′

we have, as n→ ∞, Wnt →Wt in the sense of (2.4) in Drost et al., where

Wt = Wt(θ) :=
1

v(Yt−1,ϑ)

∂

∂ϑ′

(m(Yt−1,ϑ), v(Yt−1,ϑ))
˛̨
˛
ϑ=θ

=
1

v(Yt−1, θ)
(ṁ(Yt−1, θ), v̇(Yt−1, θ))

is Ft−1-measurable (see section 4.1 in Drost et al. (1997)); Assumptions C and D thus are satisfied;

(d) l̇(Zt,Zt−1, θ, g) = Wt(θ)(−φg(Zt(θ)), ψq(Zt(θ)))′, as defined in Eq. (3.2), satisfies Assumption E.

Theorem 2.1 in Drost et al. (1997) thus applies, which concludes the proof. �

A.2. Proof of Proposition 4.2

From the definition of θ
e

(n)

f
, the asymptotic linearity of ∆

e
(n), the consistency of bΓ(n)

f , and the asymptotic discreteness of θ̂
(n)

(all following from Assumption (F)), we have, under P
(n)
θ,g,

n1/2
`
θ
e

(n)

f
− θ

´
= n1/2

“
θ̂

(n)
+ n−1/2

`bΓ(n)

f

´−1
∆
e

(n)(θ + n−1/2n1/2(θ̂
(n) − θ), f) − θ

”

= n1/2
“
θ̂

(n)
+ n−1/2Γ−1(θ, f, g)

“
∆
e

(n)(θ, f) − Γ(θ, f, g)n1/2`
θ̂

(n) − θ
´”

− θ
”

+ oP(1)

= Γ−1(θ, f, g)∆
e

(n)(θ, f) + oP(1).

The result then readily follows from the asymptotic normality of ∆
e

(n)(θ, f). �

B. Technicalities

B.1. Computation of the rank-based central sequence

The rank-based central sequences ∆
e

(n)(θ, f) we eventually are working with are very simply obtained by substituting

F−1(Rt/(n + 1)) for Zt in ∆(n)(θ, f). This, however, requires some justification. Before projecting ∆(n)(θ, f), we first need

rewriting the central sequence ∆(n)(θ, f) as a function of the present and past residuals Zt(θ) only. To this end, let Zt−1 :=

(Zt−1, . . . , Z1, ε0, ε−1, . . .). The structure of the dynamic location-scale model (2.1) implies that, for any fixed θ, Yt is a

measurable function of Zt, with Zt−1-measurable conditional location and scale: with a slight abuse of notation,

l̇(Zt,Zt−1, θ, f) =
v̇(Zt−1, θ)

v(Zt−1, θ)
ψf (Zt(θ)) − ṁ(Zt−1, θ)

v(Zt−1, θ)
φf (Zt(θ)). (B.1)

15In this proof, labels A, B, . . . refer to the assumptions in Drost et al. (1997), labels (A), (B), . . . to ours.
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It may happen that (B.1) only requires a finite number of lagged residuals Zt−i but, quite often, an infinity of them are involved;

this is the case, for instance, in AR models. Considering the approximation l̇
sn

(Zt,Z
sn

t−1, θ, f) of l̇(Zt,Zt, θ, f) obtained by

replacing, in (B.1), Zt−1 with the truncation Zsn

t−1 := (Zt−1, . . . , Zt−min(t−1,sn), 0, 0, . . .), we make the following assumption.

Assumption (D). There exists a sequence of integers sn < n such that sn ↑ ∞ as n→ ∞ and, for all θ ∈ Θ and g ∈ G,

n−1/2
nX

t=1

“
l̇
sn

(Zt,Z
sn

t−1, θ, g) − l̇(Zt,Zt−1, θ, g)
”

= oqm(1) as n→ ∞, under P
(n)
θ,g, (B.2)

where oqm(1) stands for a sequence that tends to zero in quadratic mean.

Assumption (D) is satisfied by most stationary Markov processes of order p and all q-dependent processes; examples are

provided in Section 5. It implies that substituting the truncated scores l̇
sn

(Zt,Z
sn

t−1, θ, f) for the exact ones l̇(Zt,Zt, θ, f) in the

definition of ∆(n)(θ, f) still yields a central sequence (central sequences are only defined up to oP(1)’s), which, for simplicity,

we still denote as ∆(n)(θ, f). Note that (B.2) implies that the variance (under P
(n)
θ,f ) of l̇

sn

(Zt,Z
sn

t−1, θ, f) is O(1), hence, in

view of the independence between Zt and Zsn

t−1, that the expectation (under P
(n)
θ,f ) of l̇

sn

(Zt,Z
sn

t−1, θ, f) remains zero.

Finally, in order to define a rank-based version of ∆∗(n)(θ, f), we further make the following very mild assumption on the

truncated score function l̇
sn

associated with the reference density f .

Assumption (E). The mapping (Zt,Z
sn

t−1) 7→ l̇
sn

(Zt,Z
sn

t−1, θ, f) is componentwise monotone in all its arguments, or a linear

combination of such componentwise monotone functions.

This technical assumption is required in the proof of Proposition 3.2, for the usual asymptotic representation results for

rank-based statistics to hold; see Lemma 3.1 in Hallin and Puri (1991) and reference therein. Recall, however, that the class

of differences of monotone functions coincides with the class of functions with bounded variation. Restricting to reference

densities f for which such functions as φf or ψf have bounded variation has little practical consequences and only discards

pathological cases. As for the (marginal) dependence on lagged values of the Zt’s, it is linear in AR-type models, or polynomial

when based on a Volterra expansion (as in D.1 and D.2), hence also has bounded variation.

The rank-based score in (3.5) is defined as the projection of l̇
sn

(Zt,Z
sn

t−1, θ, f) onto B(n)(θ). Letting sn = s and R
sn

t :=

(R
(n)
t , . . . , R

(n)
t−s), we set (recall that the score function is square-integrable), under Assumption (E),

af (Rsn

t ; θ) := Eθ,f

h
l̇
sn

(Zt,Z
sn

t−1, θ, f)|R(n)
t , . . . , R

(n)
t−s

i
(B.3)

(the exact scores). Those exact scores in general do not admit a closed form. However, they can be replaced by the so-called

approximate scores

a
(n)
f (Rsn

t ; θ) := l̇
sn

 
F−1

 
R

(n)
t

n+ 1

!
, . . . , F−1

 
R

(n)
t−s

n+ 1

!
, θ, f

!
; (B.4)

contrary to the exact ones, those approximate scores are straightforwardly evaluated.

With approximate scores, the rank-based central sequence takes the form

∆
e

(n)(θ, f) =
1√
n− s

nX

t=s+1

a
(n)
f (Rs

t ; θ) − m
(n)
f (B.5)

with the re-centering m
(n)
f :=

√
n− sE

hPn
t=s+1 a

(n)
f (Rs

t ; θ)
i
. By standard U -statistics results:

m
(n)
f =

√
n− s

n(n− 1) · · · (n− s)

X
· · ·
X

1≤i1 6=···6=is≤n

a
(n)
f

„
i1

n+ 1
, ...,

is
n+ 1

; θ

«
+ oP (1), (B.6)

so that m
(n)
f indeed qualifies as a centering; see Lemma 1 in B.2.
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B.2. A re-centering Lemma

We start with a general result on square-integrable of monotone functions.

Lemma 1. Let h be a square-integrable monotone non-decreasing function from (0, 1) to R. Then,

1

n

nX

i=1

h
“ i

n+ 1

”
−
Z 1

0

h(u) du = o
`
n−1/2´ as n→ ∞.

Proof. Without loss of generality, we may assume that
R 1

0
h(u) du = 0. Since h is monotone non-decreasing and square-

integrable,
1

n+ 1
h2
“ n

n+ 1

”
≤
Z 1

n/(n+1)

h2(u) du = o(1).

Therefore, h2
`

n
n+1

´
= o(n), h

`
n

n+1

´
= o(n1/2), and 1

n
h
`

n
n+1

´
= o
`
n−1/2

´
. Similarly, 1

n
h
`

1
n+1

´
= o
`
n−1/2

´
, and hence

max
1≤i≤n

1

n

˛̨
h
` i

n+ 1

´˛̨
= o
`
n−1/2´. (B.7)

Let u0, u
− and u+ be such that h(u0 − 0) ≤ 0, h(u0 + 0) ≥ 0, and

R u−

0
h(u) du = −

R 1

u+ h(u) du, so that
R u+

u−
h(u) du = 0.

Definining i− := ⌈(n+ 1)u−⌉, i0 = ⌊(n+ 1)u0⌋, and i+ := ⌊(n+ 1)u+⌋, decompose the sum Sn := 1
n

Pn
i=1 h

“
i

n+1

”
into

Sn = S−−
n + S−

n + S+
n + S++

n

:=
1

n

i−−1X

i=1

h
“ i

n+ 1

”
+

1

n

i0X

i=i−

h
“ i

n+ 1

”
+

1

n

i+X

i=i0+1

h
“ i

n+ 1

”
+

1

n

nX

i=i++1

h
“ i

n+ 1

”
.

Clearly,

0 ≤ − n

n+ 1
S−−

n ≤ −
Z u−

0

h(u) du and 0 ≤ n

n+ 1
S++

n ≤
Z 1

u+

h(u) du, (B.8)

as the corresponding rectangular areas 1
n+1

˛̨
h
`

i
n+1

´˛̨
lie between the axis and the curve u 7→ h(u). Also,

− n

n+ 1
S−

n =

8
><
>:

D−
n +

“
u− − i− − 1

n+ 1

”˛̨
˛h
“ i−

n+ 1

”˛̨
˛

D̄−
n +

“ i0 + 1

n+ 1
− u0

”˛̨
˛h
“ i0
n+ 1

”˛̨
˛−
“ i−

n+ 1
− u−

”˛̨
˛h
`
u−
´˛̨
˛

(B.9)

and

n

n+ 1
S+

n =

8
><
>:

D+
n +

“ i+ + 1

n+ 1
− u+

”
h
“ i+

n+ 1

”

D̄+
n +

“
u0 − i0

n+ 1

”
h
“ i0 + 1

n+ 1

”
−
“
u+ − i+

n+ 1

”
h
`
u+
´ (B.10)

where D−
n , D̄−

n , D+
n and D̄+

n are lower and upper Darboux sums, for
R u0

u−
|h(u)| du and

R u+

u0
h(u) du, respectively. Those Darboux

sums are such that

D+

n − D̄−

n ≤
∫ u+

u−

h(u) du = 0 ≤ D̄+
n −D−

n

It follows from (B.9), (B.10) and (B.8) that

D+

n − D̄−

n +

∫ u−

0

h(u) du+ o
(
n−1/2

)
(B.11)

= D+
n − D̄−

n +
( i+ + 1

n+ 1
− u+

)
h
( i+

n+ 1

)
+
( i0 + 1

n+ 1
− u0

)
h
( i0
n+ 1

)
−
( i−

n+ 1
− u−

)
h
(
u−
)

+

∫ u−

0

h(u) du

≤ n

n+ 1
Sn

≤ D̄+
n −D−

n +
(
u0 −

i0
n+ 1

)
h
( i0 + 1

n+ 1

)
−
(
u+ − i+

n+ 1

)
h
(
u+
)

+
(
u− − i− − 1

n+ 1

)
h
( i−

n+ 1

)
+

∫ 1

u+

h(u) du

= D̄+
n −D−

n +

∫ 1

u+

h(u) du+ o
(
n−1/2

)
. (B.12)
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Now,

D̄+
n −D+

n =
“
u0 − i0

n+ 1

”
h
“ i0 + 1

n+ 1

”
+
“ i+ + 1

n+ 1
− u+

”
h
“ i+

n+ 1

”
+
“
u+ − i+

n+ 1

”
h
`
u+´ = o

`
n−1/2´,

and

D̄−
n −D−

n = −
“ i−

n+ 1
− u−

”
h
`
u−
´
−
“
u− − i− − 1

n+ 1

”
h
“ i−

n+ 1

”
+
“ i0 + 1

n+ 1
− u0

”
h
“ i0
n+ 1

”
= o
`
n−1/2

´
.

It follows that the lower and upper bounds in (B.11) and (B.12) reduce to

Z u−

0

h(u) du+ o
`
n−1/2´ and

Z 1

u+

h(u) du+ o
`
n−1/2´,

respectively, and their difference to

2

Z 1

u+

h(u) du+ o
`
n−1/2

´
,

where the o
`
n−1/2

´
quantity is uniform in u+. The desired result that Sn is o

`
n−1/2

´
follows by considering a sequence u+

n

converging to 1 in such a way that
R 1

u+
n

h(u) du = o
`
n−1/2

´
.

Under Assumption (E), the score functions associated with the reference density f are assumed to be the difference between

to monotone non decreasing square-integrable functions to which Lemma 1 applies.

C. Cross-information quantities

C.1. Estimation

An important issue in the implementation of our R-estimation methodology is related to the need, in part (ii) of As-

sumption (F), for a consistent estimator of the cross-information matrix Γ(θ, f, g) in (4.2). Constructing such an estimator

is a delicate task, since Γ(θ, f, g) involves the expectation, under the actual density g, which is unknown, of quantities that

themselves depend on g and f . Estimation procedures have been proposed in Cassart et al. (2010). A fully general method is

developed in Hallin and Paindaveine (2013).

Very often, though, the matrix Γ(θ, f, g) has a special structure that can be exploited in order to simplify that estimation.

For instance, some models (e.g., the AR or ARCH ones) yield the factorization Γ(θ, f, g) = J (f, g)Υ−1(θ), where J (f, g) is a

scalar quantity depending on f and g only, while Υ−1(θ) only depends on θ. In some others, Γ(θ, f, g) is block-diagonal, with 

blocks, each of which is enjoying a similar factorization. This is the case for most models considered here.

A precise formulation of that simplifying assumption is as follows.

Assumption (G). For all θ ∈ Θ and f, g ∈ G, the cross-information matrix Γ(θ, f, g)

(G1) is block-diagonal, with  full-rank blocks of the form J1(f, g)Υ
−1
1 (θ), . . . ,J(f, g)Υ

−1
 (θ) where the scalar cross-information

quantities Jj(f, g) only depend on f and g, while the Υj(θ) matrices only depend on θ, j = 1, . . . , ;

(G2) is such that the mapping θ 7→ Γ(θ, f, g) is continuous on Θ.

When Assumption (G) holds, the procedure developed in Cassart et al. (2010) applies; the same procedure was also used by

Hallin et al. (2013) in the context of linear models for independent observations with symmetric α-stable innovation density.

In our location-scale models, Assumption (G), when it holds, takes the even simpler form

Γ(θ, f, g) =

0
B@

I1(f, g)Ip1×p1 0

0 I2(f, g)Ip2×p2

1
CAΥ−1(θ) (C.13)

with  = 2, Ip1×p1 and Ip1×p1 unit matrices of adequate dimension p1 and p2, and Υ−1(θ) is the asymptotic covariance

matrix of the Gaussian quasi-likelihood estimator. In particular, Assumption (G) holds with Γ(θ, f, g) of the form (C.13) as

soon as G is restricted to symmetric (with respect to 0) densities—see Section C.2 for details – an assumption which is quite
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common in the literature, see, e.g., Gouriéroux et al. (1984), Linton (1993), and Hallin et al. (2013). In that setting, if consistent

estimators Î1(f, g) and Î2(f, g) for the scalars I1(f, g) and I2(f, g) are available, the one-step R-estimator θ
e

(n)

f
is defined as

θ
e

(n)

f
:= θ̂

(n)
+ n−1/2Υ(θ̂

(n)
)

0
B@

Î−1
1 (f, g)Ip1×p1 0

0 Î−1
2 (f, g)Ip2×p2

1
CA∆
e

(n)(θ̂
(n)
, f). (C.14)

Cassart et al. (2010) propose the following consistent estimators. For any (λ1, λ2) ∈ R
2, let

θ̃
(n)

(λ1, λ2) := θ̂
(n)

+ n−1/2Υ(θ̂
(n)

)

0
B@

λ1Ip1×p1 0

0 λ2Ip2×p2

1
CA∆
e

(n)(θ̂
(n)
, f);

the desired estimators of I1(f, g) and I2(f, g) then are (Î1(f, g), Î2(f, g)) :=
`
(λ

(n)
∗1 )−1, (λ

(n)
∗2 )−1

´
, where

(λ
(n)
∗1 , λ

(n)
∗2 ) := inf

(λ1,λ2)∈R+×R+

n
λ1, λ2|∆e

(n)(θ̂
(n)

)′Υ(θ̂
(n)

)Υ(θ̃
(n)

(λ1, λ2))∆e
(n)(θ̃

(n)
(λ1, λ2)) < 0

o
. (C.15)

C.2. Examples

Let us show that, under suitable assumptions on innovation densities, Assumption (G) holds for all models considered in

Section 5. To illustrate this point, let us define

I1(f, g) :=

Z 1

0

φf

`
G−1(u)

´
φg

`
F−1(u)

´
du, I2(f, g) :=

Z 1

0

ψf

`
G−1(u)

´
ψg

`
F−1(u)

´
du,

I12(f, g) :=

Z 1

0

φf

`
G−1(u)

´
ψg

`
F−1(u)

´
du, and I21(f, g) :=

Z 1

0

ψf

`
G−1(u)

´
φg

`
F−1(u)

´
du.

Those four (cross-)information quantities enter the definition of Γ(θ, f, g). Assumption (G1) clearly holds when I12(f, g)

and I21(f, g) (which appear in the off-diagonal blocks, if any, of Γ(θ, f, g)) both vanish --a condition which is clearly satisfied

when f and g both are symmetric. Here are a few examples from Section 5.1.

- ARCH(q). The central sequence in Eq. (5.2) implies that the information matrix satisfies Assumption (G1) with  = 1, scalar

cross-information quantity J (f, g) = I2(f, g) and the q × q matrix Υ−1(θ) given in Kristensen and Rahbek (2005) (page 951).

Symmetry of the innovation density here is not required; that matrix is continuous in θ, so that (G2) also holds.

- AR(p)-LARCH(q). If g is symmetric, Assumption (G1) holds with two blocks ( = 2), Jj(f, g) = Ij(f, g), j = 1, 2, and Υ(θ)

the asymptotic variance matrix of the Gaussian quasi-likelihood estimator derived in Corollary 1 of Chebana and Läıb (2010).

In case g is not symmetric, the general method of Hallin and Paindaveine (2013) applies, though; (G2) clearly holds.

- AR(p)-ARCH(q). Assuming again that g is symmetric, Assumption (G1) similarly holds, now with the asymptotic variance

derived as in Theorem 3.1 of Pantula (1988), which also satisfies (G2). In case g is not symmetric, the general method of

Hallin and Paindaveine (2013) applies.

D. Analytical derivation of the rank-based central sequences in Section 5

D.1. ARCH(q)

Consider the class of ARCH(q) models, with dynamics of the form

Yt =
“
1 +

qX

j=1

θjY
2

t−j

”1/2

ǫt, (D.16)

where the ǫt’s are i.i.d. with density g, θ = (θ1, ..., θq) where θj > 0 for j = 1, .., q and such that
Pq

j=1 θj ≤ ρ < 1.
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Set Zt(θ) = Yt/
`
1 +

Pq
j=1 θjY

2
t−1

´1/2
. From Eq. (3.2), the ULAN central sequence for θ is

∆(n)(θ, g) =
1√
n

nX

t=1

ψg(Zt(θ))

1 +
Pq

j=1 θjY 2
t−j

0
BBBB@

Y 2
t−1

...

Y 2
t−q

1
CCCCA
. (D.17)

Expanding Y 2
t into a Volterra series, we obtain Y 2

t = ǫ2t +
P

k≥1 wt(k), where

wt(k) :=
X

j1,...,jk≥1

kY

r=1

θjr

kY

r′=0

ǫ2
t−

P

r′

h=0
jh

(D.18)

(with j0 = 0) converges in probability (this follows from stationarity of Yt, see, e.g., Giraitis et al. (2000) and reference therein)

is positive for all k. The condition
Pq

j=1 θj ≤ ρ < 1 implies that there exists a sequence sn such that Y 2
t can be asymptotically

reconstructed using only a finite number sn of past shocks. Indeed,

Y 2
t = Ỹ 2

t +
X

k≥sn

wt(k), with Ỹ 2
t := ǫ2t +

snX

k=1

wt(k). (D.19)

In what follows, for the sake of notational simplicity, we set s = sn. Since E(ε2t ) = 1, we have Eθ

P∞

k>s wt(k) < Cρs for

some C > 0. For any δ > 0, the Markov inequality implies that

Pθ

 
∞X

k>s

wt(k) > δ

!
≤ Cρsδ−1, hence

X

s≥1

Pθ

 
∞X

k>s

wt(k) > δ

!
<∞

and, in view of Borel-Cantelli’s first Lemma, Pθ

`P∞

k>s wt(k) > δ, i.o.
´

= 0, where i.o. is for infinitely often. As a result,
P∞

k>s wt(k) converges to zero almost surely, hence in probability, as s→ ∞.

Combining (D.19) and (D.17), we get

∆(n)(θ, g) =
1√
n

nX

t=1

ψg (Zt)

1 +
Pq

j=1 θj

“
Z2

t−j +
P

k≥1 wt−j(k)
”

0
BBBB@

Z2
t−1 +

P
k≥1 wt−1(k)

...

Z2
t−q +

P
k≥1 wt−q(k)

1
CCCCA

(D.20)

where, with a slight abuse of notation, wt−j(k) is as in (D.18), with ǫj replaced by Z t−j , for all j = 1, ..., q. Defining

et−j(s) :=
Y 2

t−j

1 +
Pq

j=1 θjY 2
t−j

− Z2
t−j +

Ps
k=1 wt−j(k)

1 +
Pq

j=1 θj

`
Z2

t−j +
Ps

k=1 wt−j(k)
´ ,

we have et−j(s) ≤ Y 2
t−j − Y

2(s)
t−j ≤ P

k≥s wt−j(k), which is oP(1). Thus, we approximate (D.17) by another central sequence

depending on a finite number s of lags only, which we also denote as ∆(n)(θ, g). In view of Section B.1 and (D.20), the

corresponding rank-based central sequence takes the form

∆
e

(n)(θ, g) =
1√
n

nX

t=1

 
ψg

 
G−1

 
R

(n)
t

n+ 1

!!
−m

(n)

g,(2)

!

0
BBBBBBBBBBBBBBBBBBB@

“
G−1

“R(n)
t−1

n+ 1

””2

+
sX

k=1

we t−1

`
k
´

1 +

qX

j=1

θj

““
G−1

“ R(n)
t−j

n+ 1

””2

+

sX

k=1

we t−j

`
k
´”

...

“
G−1

“ R(n)
t−q

n+ 1

””2

+

sX

k=1

we t−q

`
k
´

1 +

qX

j=1

θj

““
G−1

“ R(n)
t−j

n+ 1

””2

+
sX

k=1

we t−j

`
k)
”

1
CCCCCCCCCCCCCCCCCCCA

,

where wt−j

`
k
´

is computed by replacing all Zt’s by G−1(R
(n)
t /(n + 1)), and m

(n)

g,(2)
, given in (5.5), is such that the expected

value of ∆
e

(n)(θ, g) is exactly zero for every n.
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Lemma 1 in B.2 implies that m
(n)
g,(2) = o

`
n−1/2

´
, hence can be omitted, yielding

∆
e

(n)(θ, g) =
1√
n

nX

t=1

ψg

 
G−1

 
R

(n)
t

n+ 1

!!

0
BBBBBBBBBBBBBBBBBBB@

“
G−1

“R(n)
t−1

n+ 1

””2

+
sX

k=1

wet−1

`
k
´

1 +

qX

j=1

θj

““
G−1

“ R(n)
t−j

n+ 1

””2

+

sX

k=1

we t−j

`
k
´”

...

“
G−1

“R(n)
t−q

n+ 1

””2

+

sX

k=1

we t−q

`
k
´

1 +

qX

j=1

θj

““
G−1

“ R(n)
t−j

n+ 1

””2

+
sX

k=1

wet−j

`
k)
”

1
CCCCCCCCCCCCCCCCCCCA

.

Of course, rather than ∆
e

(n)(θ, g), which is associated with the unknown actual density g, the rank-based central se-

quence ∆
e

(n)(θ, f) associated with the reference density f is to computed for R-estimation purposes.

D.2. AR(p)-LARCH(q)

Consider the discrete-time bilinear process with dynamics

Yt =

pX

j=1

ϑjYt−j +

 
1 +

qX

l=1

βlYt−l

!
ǫt, (D.21)

where ǫt ∼ g, with mean zero and unit variance, and θ = (ϑ1, ..., ϑp, β1, ..., βq) satisfies AssumptionsA1-A3 in Giraitis and Surgailis

(2002). Model (D.21) includes as a special case the AR(p) process (for p > 0 and q = 0) and (for p = 0 and q > 0) the LARCH(q)

(namely, Linear ARCH) process. Following Francq and Zaköıan (2010), we assume here that infθ∈Θ

`
1 +

Pq
l=1 βlYt−l

´
is almost

surely bounded away from zero— sufficient condition for this is a compactly supported innovation and compact parameter

space Θ with suitable endpoints.

Because of the combination of AR with LARCH process, the ULAN central sequence for θ features both a location and a

scale component:

∆(n)(θ, g) =
1√
n

nX

t=1

“
1 +

qX

l=1

βlYt−l

”−1

0
BBBBBBBBBBBBBB@

−φg (Zt(θ))

0
BBBB@

Yt−1

...

Yt−p

1
CCCCA

ψg (Zt(θ))

0
BBBB@

Yt−1

...

Yt−q

1
CCCCA

1
CCCCCCCCCCCCCCA

. (D.22)

Let A(z) :=
P∞

j=1 ϑjz
j , B(z) :=

P∞

l=1 βlz
l be analytic on |z| < 1, with B(z) 6= 1, and write

U(z) := (1 −B(z))−1 =

∞X

j=0

ujz
j , and W (z) := A(z)U(z) =

∞X

j=0

wjz
j .

Giraitis and Surgailis (2002) show the invertibility of Yt, expressing it as the convergent orthogonal Volterra series

Yt =

∞X

k=1

X

jk<..<j1<t

ut−j1wj1−j2 ...wjk−1−jk
ǫj1 ...ǫjk

, (D.23)

which depends on a infinite number of lagged shocks.

From Theorem 2.2 in Giraitis and Surgailis (2002) it follows that Yt = Y s
t + oP(1), where Y s

t is obtained by truncating

Eq. (D.23) to the s-th term, with s = s(n) → ∞ as n → ∞. Additionally, it follows from the continuous mapping theorem
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that (1 +
Pq

l=1 βlY
s

t−l)
−1 = (1 +

Pq
l=1 βlYt−l)

−1 + oP(1), for every t as n→ ∞. As a result,

et−j =
Yt−j

(1 +
Pq

l=1 βlYt−l)
− Y s

t−j

(1 +
Pq

l=1 βlY s
t−l)

= oP(1), (D.24)

so that, letting

ζt :=
1

1 +
Pq

l=1 βl

“Ps
k=1

P
jk<..<j1<t−l ut−j1wj1−j2 ...wjk−1−jk

Zj1 ...Zjk

” ,

∆
(t,s)
(1) (θ, g) = −ζtφg (Zt(θ))

0
BBBB@

Ps
k=1

P
jk<..<j1<t−1 ut−j1wj1−j2 ...wjk−1−jk

Zj1 ...Zjk

...
Ps

k=1

P
jk<..<j1<t−p ut−j1wj1−j2 ...wjk−1−jk

Zj1 ...Zjk

1
CCCCA
,

and

∆
(t,s)
(2) (θ, g) = ζtψg (Zt (θ))

0
BBBB@

Ps
k=1

P
jk<..<j1<t−1 ut−j1wj1−j2 ...wjk−1−jk

Zj1 ...Zjk

...
Ps

k=1

P
jk<..<j1<t−q ut−j1wj1−j2 ...wjk−1−jk

Zj1 ...Zjk

1
CCCCA
,

we have that

∆(n)(θ, g) =
1√
n

nX

t=1

0
@ ∆

(t,s)

(1) (θ, g)

∆
(t,s)

(2) (θ, g)

1
A (D.25)

is another version of the central sequence in (D.22), since it approximates ∆(n)(θ, g) up to oP(1). The rank-based central

sequence ∆
e

(n)(θ, g) again is obtained as the approximate-score projection of this central sequence ∆(n)(θ, g) onto the invariant

σ-field generated by the ranks, namely replacing, in (D.25), Zt with G−1(R
(n)
t /(n+1)) for every t and re-centering the resulting

rank-based statistic. We illustrate this construction in the AR(1)-LARCH(1) example.

AR(1)-LARCH(1). Let us consider model (5.8). The truncated Volterra series here takes the form

Y s
t =

sX

k=1

(β1/ϑ1)
k

X

jk,...,j1<t

ϑt−jk

1 ǫj1 , ..., ǫjk
, ,

which is such that Yt = Y s
t + oP(1); an alternative representation for Y s

t follows from iterating Eq. (5.8):

Y s
t = ǫt +

sX

k=1

ǫt−k

tY

m=t−k+1

(β1ǫm + ϑ1), (D.26)

which is still implying that Yt = Y s
t + oP(1), see Giraitis and Surgailis (2002, page 282). Setting

Zt := (Yt − ϑ1Yt−1)/(1 + β1Yt−1),

and θ := (ϑ1, β), ULAN holds with central sequence

∆(n)(θ, g) =
1√
n

nX

t=1

0
@ −φg (Zt)

ψg (Zt)

1
A

Ps
k=1 (β1/ϑ1)

kP
jk,...,j1<t−1 ϑ

t−jk

1 Zj1 , ..., Zjk

1 + β1

Ps
k=1 (β1/ϑ1)

kP
jk,...,j1<t−1 ϑ

t−jk

1 Zj1 , ..., Zjk

=
1√
n

nX

t=1

0
@ −φg (Zt)

ψg (Zt)

1
A Zt +

Ps
k=1 Zt−k

Qt
m=t−k+1(β1Zm + ϑ1)

1 + β1(Zt +
Ps

k=1Zt−k

Qt
m=t−k+1(β1Zm + ϑ1))
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where the last expression, which is easier to work with, follows from Eq. (D.26). To derive the rank-based central sequence, put

ζ
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Then, letting

∆
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and
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with m
(n)
g,(1) and m

(n)
g,(2) such that the expectations of ∆

e
(t,s)
(1) (θ, g) and ∆

e
(t,s)
(2) (θ, g) are exactly zero. We set

∆
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As in the AR case of Hallin and Werker (2003) and the case of ARCH processes discussed in D.1, Lemma 1 in B.2 implies

that m
(n)
g,(1) and m

(n)
g,(2) are o

`
n−1/2

´
, hence can be omitted.

Here again, rather than ∆
e

(n)(θ, g), which is associated with the unknown actual density g, the rank-based central se-

quence ∆
e

(n)(θ, f) associated with the reference density f is to computed for R-estimation purposes.

D.3. AR(p)-ARCH(q)

Consider the process with dynamics

Yt =

pX

j=1

ϑjYt−j +

 
1 +

qX
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βlY
2
t−j

!1/2

ǫt, (D.29)

where the ǫt’s are i.i.d. with standardized density g, θ = (ϑ1, ..., ϑp, β1, ..., βq), and the parameters satisfy the assumptions

for stationarity in Pantula (1988). Because of the combination of AR with ARCH process, the ULAN central sequence for ϑ

features a location and a scale component:
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Using the results in Hansen (1991), one can show that there exists an asymptotically equivalent version of (D.30) which only

depends on a finite number of past shocks. Then, the definition of a rank-based central sequence (associated with reference

density f) is obtained using the approximate scores. However, one can derive such a rank-based central sequence heuristically

by (i) using a recurrence similar to (5.3) and (5.9), starting from Y0 = 0; (ii) replacing Zt in (D.30) by F−1(R
(n)
t /(n+ 1)). The

resulting rank-based statistic must be re-centered by means of m
(n)

f,(1) and m
(n)

f,(2). Closed-form expression of m
(n)

f,(1) when f is the

Gaussian, the Logistic, and the Laplace density follow from the values provided by Hallin and Mélard (1988), whilem
(n)

f,(2)
is easily

computed as in (5.5). The re-centering Lemma in Appendix shows that both m
(n)
f,(1) and m

(n)
f,(2) are o

`
n−1/2

´
. The asymptotic

covariance Γ∗(θ, f) of ∆
e

(n)(θ, f) under H(n)
θ (which coincides with the semiparametric information matrix under H(n)

θ,f ) is of

the form (5.11), with Υ−1(θ) derived as in Theorem 3.1 of Pantula (1988).
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D.4. Discretely observed Cox-Ingersoll-Ross (CIR) processes

The CIR process is the solution to

dYs = k(1 − Ys)dt+ σ
√
YsdWs, (D.31)

where 2k > σ2, with conditional mean and variance (see, e.g., Bibby et al. (2010))

E
`
Yth|Y(t−1)h

´
= (1 − exp{−kh}) + Y(t−1)h exp{−kh},

Var
`
Yth|Y(t−1)h

´
= Y(t−1)h

σ2

k
(exp{−kh} − exp{−2kh}) +

σ2

2k
(1 − exp{−kh})2 .

Assume that the discrete-time process {Yth; t ∈ Z} is observed. The exact transition density of the process is known in closed

form, but the derivation of the maximum likelihood estimator (MLE) for θ := (k, σ2) is numerically cumbersome. As a result,

most empirical studies rely on the model

Yth = (1 − exp{−kh}) + Y(t−1)h exp{−kh} (D.32)

+

»
Y(t−1)h

σ2

k
(exp{−kh} − exp{−2kh}) +

σ2

2k
(1 − exp{−kh})2

–1/2

ǫth,

with i.i.d. standard normal ǫth’s. The resulting QL estimator typically exhibits quite large standard errors (see,e.g., Fan et al.

(2014)) but improvements can be expected from using R-estimators in the context of the semiparametric model (2.1). To this

end, notice that the discrete-time model in (D.32) is an AR(1)-ARCH(1) model; this brings us back to (D.30).

D.5. Rank-based central sequence for the realized volatility numerical analysis

The rank-central sequence for the log-TSRV model of Section 6.1 are obtained using

(a) a Gaussian reference density f , yielding a rank-based central sequence ∆
e
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which is a linear combination of the van

der Waerden correlation coefficients
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where Φ as usual stands for the standard normal distribution function;

(b) a logistic reference density f , yielding a rank-based central sequence ∆
e

(n)

W
which is a linear combination of the Wilcoxon

correlation coefficients
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(c) a double-exponential reference density f , yielding a rank-based central sequence ∆
e

(n)

L
which is a linear combination of

the Laplace correlation coefficients (I [·] stands for the indicator function)
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−
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Under (6.1), Assumption (G) is satisfied with  = 1, without any symmetry assumption on g.
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