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Université Libre de Bruxelles

London, December 11 2015

VALIDITY-ROBUST ESTIMATION IN SEMIPARAMETRIC NONLINEAR TIME SERIES MODELS – p.1/81



1. Introduction and Motivating Example

1.1 Gaussian dynamic location-scale models

Dynamic location-scale processes are essential tools in time series econometrics,

with sophisticated classes of discrete- and continuous-time models such as

ARCH, AR-ARCH or AR-LARCH models, AR conditional duration models, or

discretely observed diffusions with jumps.

Probabilistic properties have been studied extensively and in great details;

statistical analysis is less exhaustive, and still presents several challenges.

Among them is the specification of underlying densities. All models considered in

the literature involve some unobserved driving noise, the density of which is often

specified to be Gaussian, although Gaussian assumptions are unrealistic in most

applications.

In particular, QL estimators erroneously are surmised to be root-n consistent and

asymptotically normal under very general conditions (actually, this requires,

essentially, finite fourth-order moments).
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1.2 Semiparametric extensions

The trouble is that those models are used, mainly, in a financial context where

heavy tails are quite common and innovation processes do not have finite fourth

moment.

As a result, Gaussian QL estimators fail to be root-n consistent and asymptotically

normal; see e.g. Hall and Yao (2003).

Moreover, even when standard asymptotics (root-n consistency and normality)

hold, Gaussian QL estimators yield good performances only if the actual density

is “nearly Gaussian”, and their efficiency rapidly deteriorates in the presence of

skewness or excess kurtosis, two characteristics which are quite common in

financial data.

Finally, Gaussian QL estimators are highly nonrobust, and can be severely

distorted by a small number of outliers.

Those pitfalls have been stressed by many authors—Linton (1993) for ARCH

models, Drost and Klaassen (1997) for GARCH, Hall and Yao (2003) for

heavy-tailed ARCH and GARCH, Drost and Werker (2004) for duration models,

Francq and Zakoı̈an (2010, 2014) for LARCH and GARCH, ...
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Remedies?

• Replacing the Gaussian reference density with more appropriate pseudo

densities (e.g. Student ones), defining non-Gaussian QL estimators does not work:

Fisher-consistecy under misspecified densities is lost, leading to root-n inconsistent

estimates.

• The bootstrap approach by Hall and Yao (2003) is recovering, under certain

conditions, the non-Gaussian asymptotic distribution of the Gaussian QL

estimator but does not restore root-n consistency, hence does not remedy the

lack of rate-optimality of the estimator.
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• A semiparametric approach, along the standard lines of Bickel, Klaassen,

Wellner and Ritov (actually restricted to independent observations; the

time-series case is treated by Drost, Klaassen and Werker (1997)) under which the

innovation density—call it g—remains unspecified is more realistic highly

advisable.

Typical examples of that approach are Linton (1993), Wefelmeyer (1996), Drost

and Klaassen (1997), Drost, Klaassen and Werker (1997), and Drost, and

Werker (2004).

Standard as it is, not without serious difficulties: methodologically and

computationally heavy; distinct possible semiparametric extensions inducing

distinct efficient estimators, the validity of which depends on the semiparametric

model adopted.
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1.3 Discretely observed non-Gaussian Ornstein-Uhlenbeck processes (1)

A motivating example

The Ornstein-Uhlenbeck process Y has dynamics

dYs = −θYsds+ dLs.

Instead of the usual assumption that Ls is Brownian motion (which leads to

Gaussian AR-type discretely observed processes), let us assume, more generally,

that Ls is some Lévy process.

This includes Lévy processes with jumps, such as compound Poisson processes,

which are typically considered in the analysis of the (realized) volatility of

financial assets: see, e.g., Barndorff-Nielsen and Shepard (2001).
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Suppose we are given equally spaced discrete-time observations

{Y0, Yh, Y2h, ..., Ynh}

of Y, where h is the time lag between two consecutive observations. It can be

shown that

Yth = m(θ)Y(t−1)h + v(θ)ǫth t ∈ Z,

where the ǫth’s are independently and identically distributed, with some

probability density g,

m(θ) = exp{−θh}, and v2(θ) = (1 − exp{−2θh})/2θ.

In the classical case under which Ls is Brownian motion, ǫth is standard normal,

m(θ)Y(t−1)h = E[Yth|Y(t−1)h] and v2(θ) = Var[Yth|Y(t−1)h]

are the conditional mean and variance, respectively, of Yth.

Call this the Gaussian case.
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In the general Lévy-driven case, both the distribution of the Lévy process Ls and

the value of θ enter the characterization of the discrete-time innovation

density g, generating a complex class of possible distributions.

Several semiparametric extensions of the Gaussian case therefore have been

considered in the literature: they all consider the model equation

Yth = m(θ)Y(t−1)h + v(θ)ǫth t ∈ Z,

with

m(θ) = exp{−θh}, and v2(θ) = (1 − exp{−2θh})/2θ.

and independently and identically distributed ǫth’s having density g, where

either
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independently and identically distributed ǫth’s having density g, where either

(i) g in the family G0 of all nonvanishing densities (g(z) > 0 for all z),

(ii) g in the family GWef of all densities (Wefelmeyer (1996)) with mean zero,

variance one, and finite moments of order four,

(iii) g in the family GHKW1 of all densities (Hallin, Koell and Werker (2000)) with

(median zero and)

∫ −1

−∞

g(z)dz =

∫ 0

−1

g(z)dz =

∫ 1

0

g(z)dz =

∫ ∞

1

g(z)dz = 1/4, or

(iv) g in the family GHKW2 of all densities (Hallin, Koell and Werker (2000)) with

(median zero and)

∫ 0

−∞

g(z)dz =

∫ 1

−1

g(z)dz = 1/2.

Call E(i), . . . , E(iv), respectively, the resulting semiparametric models.
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Note that the family G0 contains the other three, and contains the innovation

densities of all discretized versions of the original process; there is no guarantee,

though, that for every density g in G0 (in GWef, GHKW1, or GHKW2) there exists a

Lévy process such that the discretized version of Y has innovation density g.

The standard Bickel et al. semiparametric approach moreover requires g to

satisfy some regularity assumptions: g should have finite variance, and be

absolutely continuous, with (almost everywhere) derivative ġ, such that

∫ ∞

−∞

(ġ(z)/g(z))2g(z)dz < ∞ and

∫ ∞

−∞

(1 + zġ(z)/g(z))2g(z)dz < ∞,

namely, g has finite Fisher information for location and for scale—which is less

demanding, though, than finite fourth-order moments.
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That standard semiparametric approach can be described in three steps.

• Step (a) consists in establishing the so-called ULAN (Uniform Local Asymptotic

Normality) property for the fixed-g submodels. Under very general assumptions

on the density g, this property indeed holds here, with a central sequence of the

form

∆(n)(θ, g) = − 1√
n

n∑

t=1

{
∂θm(θ)

v(θ)

ġ(ǫth(θ))

g(ǫth(θ))
Y(t−1)h +

∂θv(θ)

v(θ)

(
1 + ǫth(θ)

ġ(ǫth(θ))

g(ǫth(θ))

)}
,

where ǫth(θ) := (Yth −m(θ)Y(t−1)h)/v(θ).

Note that the Gaussian QL is obtained as the solution of the Gaussian likelihood

equation, here reducing to

∆(n)(θ, φ) =
1√
n

n∑

t=1

{
∂θm(θ)

v(θ)
ǫth(θ)Y(t−1)h +

∂θv(θ)

v(θ)

(
ǫ2th(θ) − 1

)}
= 0,

where φ as usual stands for the standard Gaussian density.
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• Step (b) requires a theoretical derivation of the so-called tangent space

projection ∆∗(n)(θ, g) (the semiparametrically efficient, at g and θ, central

sequence) of ∆(n)(θ, g).

Tangent space projections are model-specific, and their derivation in general is

far from trivial.

• Finally, in step (c) those semiparametrically efficient central sequences are to

be treated in the same way as ordinary central sequences—that is, in a point

estimation context, essentially, as log-likelihood gradients, yielding estimating

equations of the form ∆∗(n)(θ, g) = 0 or entering the construction of one-step

solutions to the latter.
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Depending on the semiparametric model adopted, one obtains in step (b) the

following results.

(i) For E(i), the dependence on θ of the scale does not bring any

information: the model is perfectly equivalent to an AR(1) model with

autoregressive parameter m(θ) and unspecified innovation density. Those

models are well known to be adaptive—that is, their semiparametrically

efficient central sequences coincide (for all g and θ) with their

“parametric” central sequences. As a result, we obtain here

∆∗(n)(θ, g) = − 1√
n

n∑

t=1

∂θm(θ)

v(θ)

ġ(ǫth(θ))

g(ǫth(θ))
Y(t−1)h.
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(ii) For E(ii), we have

∆∗(n)(θ, g) = − 1√
n

n∑

t=1

{
∂θm(θ)

v(θ)

ġ(ǫth(θ))

g(ǫth(θ))
Y(t−1)h

+c−1
g (θ)∂θv(θ)

(
v2(θ)ǫ2th(θ) − v(θ)

)

−µ̂3ǫth(θ)

}

with

cg(θ) :=
(
µ̂4 − v2(θ)

)
v(θ) − µ̂2

3,

µ̂3 and µ̂4 the empirical moments of order 3 and 4 of the ǫth(θ)’s.
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(iii) For E(iii), denoting by Eg(·) expectation under g, we have

∆∗(n)(θ, g) =
1√
n

n∑

t=1

{
∂θm(θ)

v(θ)

ġ(ǫth(θ))

g(ǫth(θ))
[Y(t−1)h − Eg(Y(t−1)h)]

+4
∂θv(θ)

v(θ)
g(sgn(ǫth(θ))) sgn(ǫ2th(θ) − 1)

+2
∂θm(θ)

v(θ)
g(0) sgn(ǫth(θ))Eg[Y(t−1)h]

+
∂θm(θ)

v(θ)
[4g(sgn(ǫth(θ))) − 2g(0)]

× sgn(ǫ2th(θ) − 1) sgn(ǫth(θ))Eg[Y(t−1)h]

}
.
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(iv) the result for E(iv), with the same notation and

δ :=

∫ 0

−1

g(z)dz −
∫ −1

−∞

g(z)dz,

similarly follows:

∆∗(n)(θ, g) =
1√
n

n∑

t=1

{
∂θm(θ)

v(θ)

ġ(ǫth(θ))

g(ǫth(θ))
[Y(t−1)h − Eg(Y(t−1)h)]

+4
∂θv(θ)

v(θ)

×
1
2
(g(1) + g(−1)) sgn(ǫ2th(θ) − 1) − δ(g(1) + g(−1)) sgn(ǫth(θ))

1 − 4δ2

+2
∂θm(θ)

v(θ)

g(0) − 2δ(g(1) − g(−1))

1 − 4δ2
sgn(ǫth(θ))Eg(Y(t−1)h)]

+
∂θm(θ)

v(θ)

2(g(1) − g(−1)) − 4g(0)

1 − 4δ2
sgn(ǫ2th(θ) − 1)Eg(Y(t−1)h)]

}
.
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This calls for several immediate remarks.

(1) First, the semiparametrically efficient central sequences ∆∗(n)(θ, g) are

considerably more complicated than ∆(n)(θ, g); their derivation is nontrivial,

model-specific, to be performed on a case-by-case basis.

(2) Second, semiparametrically efficient central sequences depend on g and its

derivative ġ, both unknown. For f 6= g, typically,

Eg[∆∗(n)(θ, f)] 6= 0

(violating the Fisher consistency condition), so that estimators based on

∆∗(n)(θ, f) are not root-n consistent.

In order to restore root-n consistency, kernel estimates of both g and ġ have to be

computed and plugged-in into ∆∗(n)(θ, g), yielding ∆∗(n)(θ, ĝ(n)), on which

(step (c)) standard semiparametric estimators are based.

This implies careful bandwidth selection and some additional niceties such as

sample splitting. Moreover, kernel estimation of g and ġ is unlikely to produce

good results in small and moderately large samples.
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(3) Third, the semiparametric extensions considered in (i)-(iv) all are equally

plausible, offering little guidelines for choosing any one of them rather than the

other: E(i) is quite general, but does not exploit the dependence on θ of the

scale; E(ii) requires finite fourth-order moments; E(iii) and E(iv) only require

second-order moments, but m(θ) and v2(θ) are losing their interpretations in

terms of conditional mean and variance.

(4) On top of that, if the actual model lies in E(j) but not in E(j′)

(j, j′ = (i), . . . , (iv)), the semiparametrically efficient central sequence

associated with E(j′) again is losing Fisher consistency. The choice of the “right”

semiparametric extension thus is both crucial and problematic, the only “riskless

choice” being that of E(i).
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The objective of this talk is to propose another semiparametric approach, based

on residual ranks (the ranks of the ǫth’s), which avoids the derivation of

complicated tangent space projections, does not require estimating any density

function g, and remains valid under minimal regularity assumptions (those

guaranteeing finite Fisher information and ULAN).

Moreover, simple data-driven scores (accounting, for instance, for actual

skewness and kurtosis) can be used, allowing for much flexibility in the tuning of

asymptotic performances and improving a lot over the Gaussian methods.
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1.4 R-estimation: an alternative semiparametric approach

Essentially, our methodology proceeds along the same steps as in the standard

semiparametric approach, with two fundamental differences at step (b).

First, a reference density f (rather than the actual density g) is adopted to derive

the central sequence ∆(n)(θ, f).

Second, ∆(n)(θ, f) is projected onto the σ-field generated by the ranks of the

ǫth’s (rather than projected along the tangent spaces).

In a nutshell, our method consists in the following three steps:

(a’) establishing ULAN, with central sequence ∆(n)(θ, g), for all g ∈ G (where

G ⊂ G0 contains all densities satisfying the regularity assumptions required

for ULAN to hold);

(b’) choosing some reference f ∈ G and projecting ∆(n)(θ, f) onto the σ-field

generated by the ranks of the ǫth’s—thus obtaining the so-called

rank-based central sequence ∆
˜

(n)(θ, f);

(c’) based on ∆
˜

(n)(θ, f) rather than ∆∗(n)(θ, ĝ(n)), constructing a root-n

consistent and asymptotically normal one-step R-estimator.
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Performances (under g), of course, depend on the selected reference density f :

the “closer” to g, the better.

• The choice of f can be made by the econometrician according to her/his

prior preferences or past experience.

• It also can be data-driven as soon as it only depends on the order statistic of

the ǫth’s. For instance, letting f = ĝ(n), where ĝ(n) is a kernel estimator of g, yields

an R-estimator which is semiparametrically efficient under any g ∈ G, thus

matching the performance of standard semiparametric estimation in the Bickel

et al. style; contrary to the latter, it does not require sample splitting, tough,

thanks to the independence between the ranks and the order statistic.

• Computationally less demanding choices, avoiding kernel density estimation,

are also possible; for instance, a data-driven reference density f belonging to

the family of skew-t densities can be obtained by estimating (via skew-t

maximum likelihood) a degree of freedom and a skewness coefficient. Although

the resulting f does not attempt to recover the actual g, it does account for its

skewness and kurtosis.
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Other attempts have been made to introduce R-estimation in the context of

time series models: see, among others. The estimators developed there,

however, mostly apply to ARMA models. Moreover, they rely on an extension of

the method introduced by Jaeckel (1972) for linear regression with independent

observations. Contrary to the original Hodges-Lehmann (1956) definition,

Jaeckel’s R-estimators are based on somewhat hybrid objective functions which

combine the residual ranks and the residuals themselves. In the time series

settings considered in this paper, Jaeckel-type objective functions do not follow

from any solid decision-theoretic invariance argument, and their equivalence to

the Hodges-Lehmann approach is unlikely to hold.

In contrast to the latter, our R-estimators are genuinely rank-based (measurable

with respect to the σ-field generated by the ranks), and have a clear link with

invariance, hence with semiparametric efficiency at the reference density: see

Hallin and Werker (2003).
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1.5 Motivating example (continued)

We conclude by showing how our rank-based procedures apply and yield a

root-n consistent and asymptotically normal estimator of the parameter θ, even

in the presence of misspecified innovation density (f 6= g).

In the very general semiparametric experiment E(i) (completely unspecified

density g), the central sequence, at reference density f with cumulative

distribution function F , takes the form

∆(n)(θ, f) =
√
n

n−1∑

i=1

θi−1r
(n)
f,i

− 1√
n

1

8θ2v2(θ)

n∑

t=1

(
1 + ǫth(θ)

ḟ(ǫth(θ))

f(ǫth(θ))

)

with (writing ǫt(θ) for ǫth(θ) := (Yth −m(θ)Y(t−1)h)/v(θ))

r
(n)
f,i

=
1

n− i

n∑

t=i+1

ḟ (ǫt(θ))

f (ǫt(θ))
ǫt−i(θ).
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Projecting that central sequence onto the ranks yields

∆
˜

(n)(θ, f) =
√
n

n−1∑

i=1

θi−1r
˜
(n)
f,i

with

r
˜
(n)
f,i

=
1

s(n)




1

n− i

n∑

t=i+1

ḟ

(
F−1

(
R

(n)
t

n+1

))

f

(
F−1

(
R

(n)
t

n+1

)) F−1

(
R

(n)
t−i

n+ 1

)
−m(n)


 ,

where R
(n)
t denotes the rank of ǫ

(n)
th (θ) among ǫ

(n)
h (θ), . . . , ǫ

(n)
nh (θ), and m(n) and

s(n) are exact standardizing constants.
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In the particular case of a Gaussian reference density, r
˜
(n)
f,i

takes the form of a

van der Waerden autocorrelation coefficient

r
˜
(n)

vdW;i
:=

[
1

n− i

n∑

t=i+1

Φ−1

(
R

(n)
t

n+ 1

)
Φ−1

(
R

(n)
t−i

n+ 1

)
−m

(n)

vdW

](
s
(n)

vdW

)−1

,

where m
(n)
vdW

= O(n−1) can be omitted and

s
(n)

vdW
=

1

n

n∑

j=1

(
Φ−1

(
j

n+ 1

))2

+O(n−1)

can be replaced with

1

n

n∑

j=1

(
Φ−1

(
j

n+ 1

))2

as ∆
˜

(n) only needs to be defined up to oP(1) quantities.
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The huge advantage of ∆
˜

(n)(θ, f) over ∆(n)(θ, f) is that its Fisher consistency is

robust to misspecification: while ∆(n)(θ, f) does not have expectation zero

under density g unless f = g, the expectation of ∆
˜

(n)(θ, f), which does not

depend on g, remains zero for f 6= g; hence estimators derived from ∆
˜

(n)(θ, f),

contrary to those derived from ∆∗(n)(θ, g), remain root-n consistent and

asymptotically normal even if f 6= g.
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2. Model setting and main assumptions

Let Y(n) := (Y−q+1, . . . , Y0, Y1, . . . , Yt, . . . , Yn) be the finite realization of some

stationary real-valued discrete-time process Y := {Yt; t ∈ Z} satisfying

Yt = m(Yt−1,θ) + v(Yt−1,θ)εt

with Yt−1 := (Yt−1, . . . , Yt−q).

The functions y 7→ m(y,θ) and y 7→ v(y,θ), y ∈ R
q , are specified;

θ = (θ1, . . . , θp)′ is the prameter of interest; {εt; t ∈ Z} is an independently and

identically distributed (i.i.d.) process with unspecified density g ∈ G; εt and Yt′ are

mutually independent for all t > t′.

VALIDITY-ROBUST ESTIMATION IN SEMIPARAMETRIC NONLINEAR TIME SERIES MODELS – p.27/81



The interpretation of m(y,θ) and v(y,θ) depends on g:

• if g is assumed to have mean zero and variance one, then m(y,θ) is the mean,

and v(y,θ) the standard error, of Yt conditional on Yt−1 = y; this is the

traditional specification

• if g is assumed to have median zero and interquartile range one, m(y,θ) is the

median, and v(y,θ) the interquartile range, of Yt conditional on Yt−1 = y.

Denote by P
(n)
θ,g

the joint distribution, under parameter value θ and density g,

of Y(n)

Since different (and mostly arbitrary) choices of G may lead to different tangent

space projections and definitions of semiparametric efficiency we hereafter

consider for G the most general choice G0 of the family of all nonvanishing

densities over the real line.
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Assumption (A). The functions θ 7→ m(y,θ) and θ 7→ v(y,θ) are differentiable for

all y, with gradients ṁ(y,θ) := gradθ m(y,θ) and v̇(y,θ) := gradθ v(y,θ).

Moreover, denoting by Eθ,g expectations under P
(n)
θ,g

, both Eθ,g[ṁ(Yt−1,θ)] and

Eθ,g[v̇(Yt−1,θ)] exist and are finite.

Assumption (B). (B1) For all x ∈ R, the density g(x) is strictly positive.

(B2) The mapping x 7→ g(x) is absolutely continuous on finite intervals, i.e. there

exists an a.e. derivative ġ such that, for all −∞ < a < b < ∞,

g(a) − g(b) =

∫ b

a

ġ(x)dx.,

(B3) Letting φg(x) := −ġ(x)/g(x) and ψg(x) := xφg(x) − 1, the Fisher information

for location,
I1(g) :=

∫

R

φ2
g(x)g(x)dx,

and the Fisher information for scale,

I2(g) :=

∫

R

ψ2
g(x)g(x)dx,

exist and are finite. Cauchy-Schwarz then implies that,

I12(g) = I21(g) :=

∫
xφ2

g(x)g(x)dx,

also exists and is finite. VALIDITY-ROBUST ESTIMATION IN SEMIPARAMETRIC NONLINEAR TIME SERIES MODELS – p.29/81



Denote by

Zt(θ) := (Yt −m(Yt−1,θ))/v(Yt−1,θ)

the residuals associated with the parameter value θ. Clearly,

• the hypothesis H(n)
θ

: parameter value is θ holds iff the residuals Zt(θ) are i.i.d.

• the hypothesis H(n)
θ

: parameter value is θ and innovation density is g holds iff

the residuals Zt(θ) are i.i.d. with density g
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3. Uniform local asymptotic normality and ranks

Defining

∆(n)(θ, g) := n−1/2

n∑

t=1

l̇(Zt,Zt−1,θ, g)

and

Γ(θ, g) := Eθ,g

[
l̇(Zt,Zt−1,θ, g)l̇

′
(Zt,Zt−1,θ, g)

]
,

where

l̇(Zt,Zt−1,θ, g) :=
v̇(Yt−1,θ)

v(Yt−1,θ)
ψg(Zt(θ)) − ṁ(Yt−1,θ)

v(Yt−1,θ)
φg(Zt(θ)),

we make the additional assumption

Assumption (C). For all θ ∈ Θ and g ∈ G, (i) the matrix Γ(θ, g) exists, is finite and

has full rank, and (ii) the mapping θ 7→ Γ(θ, g) is continuous.
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The following ULAN property then holds

Proposition. Let Assumptions (A)-(C) hold. For all g ∈ G, the parametric model

P(n)
g is ULAN with central sequence ∆(n)(θ, g) and information matrix Γ(θ, g).

More precisely, we have, for all g ∈ G, all θ ∈ Θ, all θ(n) such that

θ(n) − θ = O(n−1/2), and all bounded sequence τn ∈ R
p,

Λn := log
dP

(n)

θ(n)+n−1/2τ n,g

dP
(n)

θ(n),g

= τ ′
n∆(n)(θ(n), g) − 1

2
τ ′

nΓ(θ, g)τn + oP(1),

and ∆(n)(θ(n), g)
L−→ N (0;Γ(θ, g)), under P

(n)

θ(n),g
as n → ∞.
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The inverse Γ−1(θ, g) of Γ(θ, g) settles the parametric efficiency bound at g—the

“best asymptotically achievable” covariance for a regular estimator of θ in the

parametric model where g is specified: an estimator reaching that bound then

can be based on ∆(n)(θ, g)

• either by solving the likelihood equation ∆(n)(θ, g) = 0, or

• as a ∆(n)(θ̂
(n)
, g)-based one-step update of some preliminary root-n

consistent estimator θ̂
(n)

:

θ̂
(n)

+ n−1/2Γ−1(θ̂
(n)
, g)∆(n)(θ̂

(n)
, g)

Parametric efficiency, in general, cannot be reached in the semiparametric

context where g is unspecified, and the best one can go for is the

semiparametric efficiency bound Γ∗−1(θ, g).
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The semiparametrically efficient central sequence ∆∗(n)(θ, g), obtained by

projecting the central sequence ∆(n)(θ, g) along the so-called tangent space, is

the tool one needs to construct estimators that reach that semiparametric

efficiency bound

• as the one-step update of some preliminary root-n consistent estimator θ̂
(n)

:

θ̂
(n)

+ n−1/2Γ∗−1(θ̂
(n)
, g)∆∗(n)(θ̂

(n)
, g)

... this, however, is not implementable, as g is still unknown; accordingly, it is

replaced with

θ̂
(n)

+ n−1/2Γ∗−1(θ̂
(n)
, ĝ(n))∆∗(n)(θ̂

(n)
, ĝ(n))

where ĝ(n) is some kernel estimator of g.
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As announced, in order to avoid kernel estimation of g, we rather are using the

projection ∆
˜

(n)(θ, f) of ∆(n)(θ, f) (f some chosen reference density) onto the

σ-field generated by the ranks of the residuals Z1(θ), . . . , Zn(θ) (projection here is

to be interpreted as conditional expectation).

• Computing that projection is easy: it has been shown (Hallin and Werker 2003)

that it can be obtained very simply by substituting, in ∆(n)(θ, f),

F−1
(
Rt(θ)

n+ 1

)
for Zt(θ)

where Rt(θ) is the rank of Zt(θ) among Z1(θ), ..., Zn(θ) (the so-called

approximate score form).

No painful tangent space computation here! In case ∆(n)(θ, f) involves infinitely

many lagged Zt(θ)’s, adequate truncations can be performed.
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• Obviously,

Ef [∆
˜

(n)(θ, f)] = Ef [∆(n)(θ, f)] = 0

(expectation of a conditional expectation). The distribution-freeness of ranks

then entails (Fisher consistency) that also

Eg[∆
˜

(n)(θ, f)] = 0,

for any g: therefore, estimators based on ∆
˜

(n)(θ, f), unlike those based on

∆∗(n)(θ, f), remain root-n consistent under any P
(n)
θ,g

.

• Those estimators are reaching the semiparametric efficiency bound associated

with f if g and f coincide—we say that they are semiparametrically efficient at f .
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More precisely, it can be shown that

Proposition. Let Assumptions (A)-(E) be satisfied. Denote by ∆∗(n)(θ, f) a

semiparametrically efficient central sequence for P(n)
f

, and by Γ∗(n)(θ, f) its

covariance matrix under P
(n)
θ,f

. Then,

∆
˜

(n)(θ, f) − ∆∗(n)(θ, f) = oP(1) under P
(n)
θ,f

,

and

lim
n→∞

Γ
˜

(n)(θ, f) = lim
n→∞

Γ∗(n)(θ, f) =: Γ∗(θ, f),

where Γ
˜

(n)(θ, f) is the variance (does not depend on g) of ∆
˜

(n)(θ, f) and

Γ∗(θ, f) is the semiparametric information matrix (at density f).

The asymptotic equivalence, under P
(n)
θ,f , of ∆∗(n)(θ, f) and ∆

˜
(n)(θ, f) implies

that the latter can be considered a rank-based version of the semiparametrically

efficient (at f) central sequence.
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4. R-estimation

4.1 Theoretical construction

As a test statistic, the quadratic form

Q

˜
(n)

HL
(θ0, f) := ∆

˜
(n)′(θ0, f)Γ∗−1(θ0, f)∆

˜
(n)(θ0, f)

provides a test of the null hypothesis θ = θ0 (with unspecified g); that test is is

locally and asymptotically optimal against θ 6= θ0 alternatives with density f .

Therefore, it would be natural to define an R-estimator of θ as the minimizer, with

respect to θ, of Q

˜
(n)

HL
(θ, f) := ∆

˜
(n)′(θ, f)Γ∗−1(θ, f)∆

˜
(n)(θ, f).

Despite its simplicity and intuitive appeal, this definition, which in a much simpler

context goes back to Hodges and Lehmann (1956), often runs into serious

numerical difficulties related with the non-convex form of θ 7→ Q

˜
(n)

HL
(θ, f),

especially when the dimension of the parameter θ gets large.
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Let θ̂
(n)

and Γ̂
(n)

f denote an arbitrary root-n consistent (under P
(n)
θ,f

) estimator

of θ and a consistent estimator of Γ∗(θ, f), respectively.

[Assume moreover that θ̂
(n)

is asymptotically discrete.]

Assumption (F). Under P
(n)
θ,g

, as n → ∞,

(i) θ̂
(n)

is a root-n consistent and asymptotically discrete estimator of θ,

(ii) Γ̂
(n)

f is a consistent estimator of the cross-information matrix

Γ(θ, f, g) := lim
n→∞

Eθ,g

[
∆
˜

(n)(θ, f)

(
∆
˜

(n)(θ, g)

)′]
,

[methods exist for the construction of such estimators], and

(iii) g is such that (asymptotic linearity)

∆
˜

(n)(θ + n−1/2τ, f) − ∆
˜

(n)(θ, f) = −Γ(θ, f, g)τ + oP(1).

Note that, for f = g, Γ(θ, f, f) = Γ∗(θ, f) = Γ∗(θ, g).
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Proposition. Let Assumptions (A)-(F) hold. The one-step R-estimator

θ
˜

(n)

f
:= θ̂

(n)
+ n−1/2

(
Γ̂

(n)

f

)−1
∆
˜

(n)(θ̂
(n)
, f),

under P
(n)
θ,g

, is root-n consistent and asymptotically normal, with

n1/2
(
θ
˜

(n)

f
− θ
) D−→ N

(
0,Γ−1(θ, f, g)Γ∗(θ, f)Γ−1(θ, f, g)

)
.

In particular, under under P
(n)
θ,f

,

n1/2(θ
˜

(n)

f
− θ)

D−→ N
(
0,Γ∗−1(θ, f)

)
.
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4.2 Implementation details.

• Choosing a preliminary estimator

A possible candidate for θ̂
(n)

in part (i) of Assumption (F)—provided that one is

willing to assume finite fourth-order moments—is the Gaussian QL estimator.

More robust alternatives are highly recommended, though, such as the LAD

estimator of Peng and Yao (2003) for ARCH and GARCH-type models, the

non-Gaussian QL estimator introduced in Fan, Qi, and Xiu (2014) or, in the

presence of outliers and data contamination, the bounded-influence estimators

by Mancini, Ronchetti, and Trojani (2005).

The impact of that choice is limited, though. In practice, indeed, the one-step

update of θ̂
(n)

is to be iterated (θ
˜

(n)

f
being used as the preliminary estimator in a

further one-step update) until it stabilizes numerically. Such iterations do not

modify the asymptotic behavior of the R-estimator, but they do improve on its

finite-sample performances: this is in accordance with traditional

Newton-Raphson practice.
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• Choosing the score (the reference density): a data-driven approach

While the choice of the reference density f has no impact on the consistency

properties of the corresponding R-estimator, it has a direct influence on its

performances, both for finite n as for n → ∞; the “closer” f is to the actual

density g, the better the performance for θ
˜

(n)

f
.

An important advantage of R-estimation over all other methods is that the

selection of f can be data-driven as long as it is based on the order statistic of

the residuals.

Asymptotically optimal choices of f , in that respect, are the many possible (order

statistic-based) kernel estimators of g—which moreover do not require any

sample-splitting precautions. As already explained, such choice is of theoretical

rather than practical interest, and the fact that estimating g is compulsory in the

standard semiparametric approach of Bickel et al. (1993) is one of its main

drawbacks. A distinctive feature of R-estimators is the possibility of a much more

flexible selection of f .

For instance, we propose selecting f by fitting a parametric density to the (order

statistic of the) residuals associated with the preliminary estimator.
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If skewness and kurtosis are to be accounted for, a convenient family of densities

is the family of skew-t distribution (Azzalini and Capitanio 2003), with densities of

the form

hωωω(x) =
2

σ
tν(z)Tν+1

(
αz

(
ν + 1

ν + z2

)1/2)
for x ∈ R and z := σ−1 (x− µ),

indexed by ωωω := (µ, σ, α, ν), where µ ∈ R is a location, σ ∈ R
+
0 a scale, α ∈ R a

skewness parameter, and ν > 0 the number of degrees of freedom governing

the tails; tν(z) and Tν(z) are the density and cumulative distribution functions,

respectively, of the traditional Student distribution with ν degrees of freedom.

Other parametric families of course can be considered, very much in the same

way, such as the stable family, or the so-called skew generalized error family.
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• Estimation of cross-information quantities

An important issue is the need, in part (ii) of Assumption (F), for a consistent

estimator of the cross-information matrix

Γ(θ, f, g) := lim
n→∞

Eθ,g

[
∆
˜

(n)(θ, f)

(
∆
˜

(n)(θ, g)

)′]
.

Constructing such an estimator is a delicate task, since Γ(θ, f, g) involves the

expectation, under the actual density g, which is unknown, of quantities that

themselves depend on g and f .

In the present context, the matrix Γ(θ, f, g) has a special structure that can be

exploited in order to simplify that estimation.
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For instance, some models (e.g., the AR or ARCH ones) yield the factorization

Γ(θ, f, g) = J (f, g)Υ−1(θ),

where J (f, g) is a scalar quantity depending on f and g only, while Υ−1(θ) only

depends on θ.

More generally, Γ(θ, f, g) is block-diagonal, with  blocks, each of which is

enjoying a similar factorization.

A precise formulation of that simplifying assumption is as follows.
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Assumption (G). For all θ ∈ Θ and f, g ∈ G, the cross-information matrix Γ(θ, f, g)

(G1) is block-diagonal, with  full-rank blocks of the form

J1(f, g)Υ−1
1 (θ), . . . ,J(f, g)Υ

−1
 (θ)

where the scalar cross-information quantities Jj(f, g) only depend on f

and g, while the Υj(θ) matrices only depend on θ, j = 1, . . . , ;

(G2) is such that the mapping θ 7→ Γ(θ, f, g) is continuous on Θ.
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In our location-scale models, Assumption (G), when it holds, takes the even

simpler form

Γ(θ, f, g) =

(
I1(f, g)Ip1×p1 0

0 I2(f, g)Ip2×p2

)
Υ−1(θ)

where Υ−1(θ) is the asymptotic covariance matrix of the Gaussian

quasi-likelihood estimator.

In particular, Assumption (G) holds with the above Γ(θ, f, g) as soon as G is

restricted to symmetric (with respect to 0) densities—an assumption which is

quite common in the literature.
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In that setting, if consistent estimators Î1(f, g) and Î2(f, g) for the scalars I1(f, g)

and I2(f, g) are available, the one-step R-estimator θ
˜

(n)

f
is defined as

θ
˜

(n)

f
:= θ̂

(n)
+n−1/2Υ(θ̂

(n)
)

(
Î−1
1 (f, g)Ip1×p1 0

0 Î−1
2 (f, g)Ip2×p2

)
∆
˜

(n)(θ̂
(n)
, f).
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Cassart, Hallin and Paindaveine (2010) propose the following consistent

estimators. For any (λ1, λ2) ∈ R
2, let

θ̃
(n)

(λ1, λ2) := θ̂
(n)

+ n−1/2Υ(θ̂
(n)

)

(
λ1Ip1×p1 0

0 λ2Ip2×p2

)
∆
˜

(n)(θ̂
(n)
, f);

the desired estimators of I1(f, g) and I2(f, g) then are

(Î1(f, g), Î2(f, g)) :=
(
(λ

(n)
∗1 )−1, (λ

(n)
∗2 )−1

)
,

where

(λ
(n)
∗1 , λ

(n)
∗2 ) :=
(

inf
λ1∈R+

{
λ1|∆
˜

(n)(θ̂
(n)

)′Υ(θ̂
(n)

)Υ(θ̃
(n)

(λ1, 0))∆
˜

(n)(θ̃
(n)

(λ1, 0)) < 0

}
,

inf
λ2∈R+

{
λ2|∆
˜

(n)(θ̂
(n)

)′Υ(θ̂
(n)

)Υ(θ̃
(n)

(0, λ2))∆
˜

(n)(θ̃
(n)

(0, λ2)) < 0

})
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5. Theoretical examples

5.1 Discrete-time models

(a) ARCH(q) Consider the class of models with dynamics of the form

Yt =

(
1 +

q∑

j=1

θjY
2
t−1

)1/2

ǫt,

where the ǫt’s are i.i.d. with density g, θj > 0 for j = 1, ..., q, and
∑q

j=1
θj ≤ ρ for

some ρ < 1. This model is ULAN, with central sequence

∆(n)(θ, g) =
1√
n

n∑

t=1

ψg (Zt(θ))

1 +
∑q

j=1
θjY

2
t−j




Y 2
t−1

.

.

.

Y 2
t−q


 ,

where θ := (θ1, . . . , θq) and Zt(θ) := Yt/
(
1 +
∑q

j=1
θjY

2
t−1

)1/2
.
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The definition of a rank-based central sequence requires (Yt−1, . . . , Yt−q) to be

expressed in terms of a finite number of past shocks.

This is possible

• via a Volterra series expansion, or

• via a simple recurrence. For t = 1, let Z
(n)
1 (θ) = Y1, that is, assume (arbitrarily,

but this has no impact asymptotically) the unobserved initial values Y−q , ..., Y0 to

be equal to zero. This recursively yields the n-tuple Z
(n)
1 (θ), ..., Z

(n)
n (θ), with ranks

R
(n)
1 (θ), ..., R

(n)
n (θ). Consider the problem of a reconstruction of ∆(n)(θ, f) (f

some chosen reference density) based on those ranks. Since, by

definition, Y1 = Z
(n)
1 (θ), set Y

˜
1 := F−1(R

(n)
1 (θ)/(n+ 1)); start the recurrence

Y
˜

t :=

(
1 +

q∑

j=1

θjY
˜

2
t−j

)1/2

F−1

(
R

(n)
t (θ)

n+ 1

)
, t ≥ 2,
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then define

∆
˜

(n)(θ, f) =
1√
n

n∑

t=1

ψf

(
F−1

(
R

(n)
t

(θ)

n+1

))
−m

(n)

f,(2)

1 +
∑q

j=1
θjY
˜

2
t−j




Y˜
2
t−1

.

.

.

Y˜
2
t−q




where

m
(n)

f,(2)
:=

1

n

n∑

i=1

ψf

(
F−1

(
i

n+ 1

))
.

It can be shown that m
(n)

f,(2)
is o
(
n−1/2

)
. The asymptotic covariance Γ∗(θ, f) of

∆
˜

(n)(θ, f) under H(n)
θ

(which is also the semiparametric information matrix

under H(n)
θ,f

) is of the form I2(f)Υ−1(θ), where the q × q-matrix Υ−1(θ) is the

Gaussian information matrix given by Kristensen and Rahbek (2005)

(Theorem 2.1).
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(b) AR(p)-LARCH(q) Consider the discrete-time bilinear process with dynamics

Yt =

p∑

j=1

ϑjYt−j +

(
1 +

q∑

l=1

βlYt−l

)
ǫt,

where the ǫt’s are i.i.d. with density g, and θ = (ϑ1, ..., ϑp, β1, ..., βq). (If standard

conditions are satisfied), the ULAN central sequence for θ reads

∆(n)(θ, g) =
1√
n

n∑

t=1

(
1 +

q∑

l=1

βlYt−l

)−1




φg (Zt(θ))




Yt−1

..

.

Yt−p




ψg (Zt(θ))




Yt−1

.

..

Yt−q







.
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A rank-based central sequence ∆
˜

(n)(θ, f) for reference density f is obtained by

replacing, in ∆(n)(θ, f), the residual Zt(θ) by F−1(R
(n)
t (θ)/(n+ 1)), for every t.

In the AR(1)-LARCH(1) case, with dynamics

Yt = ϑYt−1 + (1 + βYt−1)ǫt t ∈ Z,

which is ULAN with central sequence

∆(n)(θ, g) =
1√
n

n∑

t=1

(
φg (Zt)

ψg (Zt)

)
Yt−1

1 + βYt−1

where Zt = Zt(θ) := (Yt − ϑYt−1)/(1 + βYt−1), this is achieved, again, either via

a truncated Volterra expansion of Yt in terms of its innovations, or a recurrence

producing a rank-based “reconstruction” Y
˜

t of Yt. This yields
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∆
˜

(n)(θ, f)=
1√
n

n∑

t=1




φf

(
F−1

(
R

(n)
t

(θ)

n+1

))
−m

(n)

f,(1)

ψf

(
F−1

(
R

(n)
t

(θ)

n+1

))
−m

(n)

f,(2)




Y
˜

t−1

1 + βY
˜

t−1
,

where

m
(n)

f,(1)
=

1

n

n∑

i=1

φf

(
F−1

(
i

n+ 1

))

and

m
(n)

f,(2)
:=

1

n

n∑

i=1

ψf

(
F−1

(
i

n+ 1

))
.

It can be shown that both m
(n)

f,(1)
and m

(n)

f,(2)
are o

(
n−1/2

)
, hence can be

omitted for n large. The asymptotic covariance Γ∗(θ, f) of ∆
˜

(n)(θ, f) under

H(n)
θ

, which is also the semiparametric information matrix under H(n)
θ,f

, is

(
I1(f)Ip1×p1 0

0 I2(f)Ip2×p2

)
Υ−1(θ)

where p1 = p, p2 = q, and Υ−1(θ) is the Gaussian information matrix as in

Chebana and Laib (2010).
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(c) Autoregressive conditional duration (ACD) models for irregularly sampled

data

As in the seminal paper of Engle and Russell (1998), let Yi denote the duration

between some (i− 1)-th and i-th events (e.g., the time elapsed between two

successive transactions of some asset); let Fi−1 denote the information up to

and including event (i− 1), and denote by Ψi−1 := E(Yi|Fi−1) the expected

conditional duration.

Then, for θ = (β, γ), define the accelerated time process

Yi = ǫiΨi−1, with Ψi−1 = Ψ(Zi,θ) = 1 + βYi−1 + γΨi−2,

where the ǫi’s are i.i.d., positive, with density g.
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Engle and Russell (1998) propose a QL estimation procedure (which in this case is

based on an exponential reference density), while Drost and Werker (2004)

introduce the class of semiparametric ACD models (which does not specifiy any

innovation density) and rely on the standard Bickel et al. semiparametric

estimation method.

We rather propose here a class of R-estimators for those duration models. First

note that the ULAN central sequence for ACD models actually is that of a

dynamic scale model for Yi:

∆(n)(θ, g) =
1√
n

n∑

i=1

ψg(Zi(θ))

1 + βYi−1 + γΨi−2

(
Yi−1

Ψi−2

)

where Zi(θ) = Yi/Ψi−1(θ).
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Similar to the recursion for the ARCH(q) case, arbitrarily putting, for t = 1,

Z
(n)
1 (θ) = Y1 yields Ψ0 = 1 and an n-tuple Z

(n)
1 (θ), ..., Z

(n)
n (θ) whose ranks are

R
(n)
1 (θ), ..., R

(n)
n (θ). Since Y1 = Z

(n)
1 (θ), define Y

˜
1 := F−1(R

(n)
1 (θ)/n+ 1), and

start the recurrence

Y
˜

i = Ψ
˜

i−1F
−1(R

(n)
i−1(θ)/n+ 1), i ≥ 2 where Ψ

˜
i−1 = 1 + βY

˜
i−1 + γΨ

˜
i−2.

Finally, the rank-based central sequence (for reference density f) is

∆
˜

(n)(θ, f) =
1√
n

n∑

i=1

ψf

(
F−1(R

(n)
i (θ)/n+ 1)

)

1 + βY
˜

i−1 + γΨ
˜

i−2

(
Y˜i−1

Ψ
˜i−2

)
.

Since innovations are nonnegative, typical candidate reference densities here

are the Gamma, Weibull, or Burr densities.
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5.2 Discretely observed continuous-time models

Affine-jump diffusion processes are central to the financial literature. Their main

characteristic is that the conditional cumulant generating function is

exponential-affine. As a result, the conditional mean and the conditional

variance of the discrete-time observed process are also affine and are known in

closed-form. These features can be exploited to derive semiparametric dynamic

location-scale models for the process observed at discrete-time points.

(d) Discretely observed mean-reverting jump diffusion

In the class of Lévy processes, let us consider the Poisson-Gaussian process Y,

which is solution to equation

dYs = −κYsds+ dWs + dZs,

where dWs is standard Brownian motion and dZs = Jsdπ(s), with π a Poisson

process with intensity 1, and i.i.d. N (α, η2) jump sizes Js.
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The exact first and second conditional moments of Y are available in closed

form, yielding, for the discretely observed n-tuple {Y0, Yh, Y2h, ..., Ynh},

E(Yth|Y(t−1)h) =
αh

κ
(1 − exp(−κh)) + Y(t−1)h exp(−κh)

and

Var(Yth|Y(t−1)h) =
1 + η2

2κ
(1 − exp(−2κh)) .

That class of models has been considered by Das (2002) in the dynamic analysis

of bond markets. Das points out that the bond market often overreacts, i.e.,

exhibits large moves in the interest rate followed by speedy reversals. The

parameter κ measures the speed of mean reversion, and plays the main role:the

half-life τ is a function of κ, being the solution to exp{−κτ} = 0.5.
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Assume the discrete-time process {Yth; t ∈ Z} is observed over n+ 1 periods,

yielding (Y0, Yh, Y2h, . . . , Ynh). Das’ estimation of κ is essentially based on an

approximate version of the dynamic location-scale model

Yth =
αh

κ
(1 − exp(−κh)) + Y(t−1)h exp(−κh) +

[
1 + η2

2κ
(1 − exp(−2κh))

]1/2

ǫth

In Das’ approach, the density g of ǫth is supposed to be standard normal.

If that Gaussian assumption is to be abandoned, several semiparametric

extensions are possible. The situation is actually pretty much the same as in the

motivating example and, for the same reasons, turning to the residual ranks

appears as the safest attitude.
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The model (with innovation density g satisfying the usual regularity assumptions) is

ULAN with respect to θ := (κ, α, η), with central sequence

∆(n)(θ, g) =
1√
n

n∑

t=1




ψg(Zt)β1(θ) + φg(Zt)κ2Y(t−1)hβ2(θ) − φg(Zt)β2(θ)β3(θ)

φg(Zt)β4(θ)

ψg(Zt)β5(θ)




where

Zt = Zt(θ) =
Yth − αh

κ
(1 − exp(−κh)) − exp(−κh)Y(t−1)h[
1+η2

2κ
(1 − exp(−2κh))

]1/2
,
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with

β1(θ) = 1
2

[
h(Coth(hκ) − 1) − η2

κ(2κ+η2)

]
, β2(θ) = α(1 − exp(hκ) + hκ),

β3(θ) = κ−3/2h exp(−hκ/2)
[(

2κ+ η2
)

Sinh(hκ)
]−1/2

, β4(θ) = h (1 − exp(−hκ))1/2/κ

(
1

and β5(θ) = η/
(
2κ+ η2

)
(Coth(x) and Sinh(x) as usual stand for the hyperbolic

cotangent and sinus of x, respectively).

Canceling ∆(n)(θ, g) yields M-estimators for θ (which are not necessarily root-n

consistent). Due to the highly nonlinear form of the estimating equations,

moreover, numerical implementation is likely to be problematic, and even more

so is the derivation of standard semiparametric estimators in the Bickel et al. style.
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The R-estimation methods developed here thus naturally enter into the picture.

Projecting ∆(n)(θ, f) (where f is some chosen reference density) onto the

space of residual ranks cancels its second and third components; as for the first

one, the terms involving hyperbolic functions disappear, and only

φg(Zt)κ2Y(t−1)hβ2(θ) yields a nondegenerate projection. This means that neither

α nor η can be estimated at root-n rate when the density g of ǫth remains

completely unspecified.

This is intuitively clear, as α and η only appear in the innovation’s unconditional

location and scale, while the ranks are invariant to location and scale

perturbations.

For reference density f , the projection onto the σ-algebra of residual ranks of the

component of the central sequence associated with κ thus coincides (up to an

irrelevant multiplicative constant) with that of n−1/2
∑n

t=1
φf (Zt)Y(t−1)h.
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More formally, let R
(n)
t (θ) denote the rank of Zt(θ). That rank is the same as the

rank R
(n)
t (κ) of Z†

t (κ) := Yth − exp(−κh)Y(t−1)h. Then, a rank-based central

sequence emerges, of the form (up to a multiplicative constant and oP(1) terms)

∆
˜

(n)(κ, f) := n1/2

sn∑

i=0

exp(−iκh)(n−i)−1

n∑

t=i+1

(
φf

(
F−1

(
R

(n)
t (κ)

n+ 1

))
F−1

( R(n)
t−i

n+ 1

)
−m(n)

f

)

where m
(n)
f

:= [n(n− 1)]−1
∑

1≤i1 6=i2≤n
φf (F−1(i1/n+ 1))F−1(i2/n+ 1), with,

under H(n)
θ

, asymptotic variance Γ∗(θ, f) = I1(f)/
(
1 − exp(−2κh)

)
;

semiparametric efficiency here refers to the discrete-time model (??) with

completely unspecified innovation density g.

Our method then leads to root-n consistent R-estimators for κ in the rather

sophisticated context of a discretized jump diffusion process where the jump

parameters are treated as nuisance; in that sense, our R-estimators are robust to

a misspecification of the jump process.
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(e) Discretely observed Cox-Ingersoll-Ross (CIR) process

The CIR process Y is often considered for short-term interest rates, stochastic

volatility, or asset pricing models. It is the solution to the stochastic differential

equation

dYs = k(1 − Ys)dt+ σ
√
YsdWs.

In Chapter 2 of Singleton (2009), a QL estimator is defined setting a Gaussian

dynamic location-scale model for the discrete-time version of Y. It can be shown

that a semiparametric dynamic location-scale extension leads to a

semiparametric AR(1)-ARCH(1) model, whose rank-based central sequence can

be used in the construction of R-estimators.
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6. Numerical examples

6.1 Asymptotic Relative Efficiencies (AREs)

In this section, we study the (asymptotic and finite-sample) performances of

several R-estimators in the model

rt = ςtǫt with log ςt = θ1 log ςt−1 + θ2 log ςt−2 + θ3 log ςt−3 + vt,

where ςt is a random variable taking values in R
+, {ǫt} is independent standard

normal white noise, the vt’s are i.i.d. with standardized density g, and ǫt is

independent of vs for all (s, t).

This model is related to the normal variance mean mixture models which are

used in modeling and forecasting the realized volatility of assets.
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We compute AREs, with respect the QL of the R-estimators based on the van der

Waerden (∆
˜

(n)

vdW
; normal f), Wilcoxon (∆

˜
(n)

W
; logistic f), and Laplace (∆

˜
(n)

L
;

double-exponential f) rank-based central sequences, under densities g in the

Johnson family (Jones and Pewsey (2009) and Ghysels and Wang (2011)).

Denote by JSU (γ, δ, µ, σ)—where γ and δ are skewness and kurtosis parameters,

respectively, while µ and σ, as usual, stand for location and scale— the general

density in that family.

For µ = 0 and σ = 1, suitable values of δ and γ are may lead to positive skewness

values as large as ten, and excess of kurtosis larger than eight.
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JSU(γ, δ, µ, σ)

Leptokurtic Skewed Leptokurtic and Skewed

ARE γ = 0, δ = 0.85 γ = 0, δ = 1 γ = 3, δ = 10 γ = 10, δ = 10 γ = 3, δ = 1.5 γ = 4, δ = 1

vdW/QL 2.567 1.755 1.002 1.014 2.657 12.341

W/QL 3.245 2.124 0.960 0.968 2.207 7.319

L/QL 3.433 2.033 0.643 0.644 1.234 2.972
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6.2 Finite-sample performances ( in the presence of skewness and leptokurtosis)

Let us consider the semiparametric ARCH(1) model

Yt = (1 + θY 2
t−1)1/2ǫt,

where the i.i.d. ǫt’s have unspecified density g. For each combination of

• the two parameter values θ = 0.1 and θ = 0.5, and

• three different series lengths n = 250, 500, 1000,

we simulated 2500 realizations based on a skew generalized error density g with

mean zero, standard deviation one, shape parameter one, and skewness

parameter five; such densities are increasingly popular in finance.

• From each realization, we computed (a) the Gaussian QL estimator (QLE), (b)

the skew-t-maximum likelihood (MLE t), (c) an R-estimator (R-QLE skwt) based on

a QLE preliminary, and (d) an R-estimator (R-LAD skwt) based on a LAD

preliminary.
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n = 250 n = 500 n = 1000
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6.3 An empirical analysis of the USD/CHF exchange rate

An empirical analysis of the series of USD/CHF exchange rate daily log-returns

and its realized volatility, as measured by the so-called Two Scales Realized

Volatility (TSRV) series (Aı̈t-Sahalia et al. 2005).

Dataset consists of tick-by-tick log mid prices over 24 hours of USD/CHF FX rates

provided by Olsen & Associates; log mid prices are computed as averages of the

logarithmic bid and ask quotes, obtained from the Reuters FXFX screen.

From the high-frequency quotes, we compute TSRV by summing the

high-frequency squared log-returns with slow scale of ten ticks, and daily

log-returns as rt = logPt − logPt−1, where Pt is the daily USD/CHF exchange rate

provided by Reuters.

We conduct our analysis on the 1993 and 1997 data.

In each year, we use the first 200 observations (from January to end of

September) as training data for model estimation and diagnosis, and the last 50

ones (from October to December) to evaluate forecasting performances.
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• Log-returns. We consider the dynamics of the process of log-returns rt

standardized by the TSRV, namely rt/TSRVt. The resulting series has

approximately mean zero, variance close to one, and a sample partial

correlation analysis with robust standard errors (unreported) does not detect any

predictability. The Shapiro-Wilks test p-values for rt/TSRVt are 0.896 and 0.208 for

the 1997 and 1993 data, respectively. Thus, we conclude that a standard normal

approximation for the ratios rt/TSRVt is supported by the data.

• Two Scales Realized Volatilities (TSRV and log(TSRV)). Turning to volatilities, we

consider the TSRV process and its log-transformation.

(i) the 1993 training period (January-September) exhibits 9 extreme values; we

label it as “standard”, and believe it expresses the typical dynamics of the TSRV;

(ii) in 1997, the training period (January-September) shows 7 extreme values,

while the Asian crisis is causing 4 extreme values between October and

December (the TSRV strikes 0.3). We label this period as “non-standard”.
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1993 1997

TSRV

Jan-Sept Oct-Dec Jan-Sept Oct-Dec

Mean 0.112 0.088 0.094 0.096

SD 0.022 0.018 0.021 0.033

Kurtosis 3.532 2.770 5.662 20.296

q.75 − q.25 0.028 0.024 0.027 0.026

obs ≤ q.50 − 3×MAD 3 0 0 0

obs ≥ q.50 + 3×MAD 7 0 7 4

USD/CHF FX rates: descriptive statistics
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1993 1997

log(TSRV)

Jan-Sept Oct-Dec Jan-Sept Oct-Dec

Mean -2.206 -2.451 -2.388 -2.375

SD 0.192 0.208 0.217 0.256

Kurtosis 3.421 3.212 3.634 7.982

q.75 − q.25 0.256 0.278 0.298 0.288

obs ≤ q.50 − 3.5×MAD 4 1 2 0

obs ≥ q.50 + 3.5×MAD 3 0 3 2

USD/CHF FX rates: descriptive statistics
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• The autocorrelation analysis (unreported) of the training data suggests that

AR(p) processes, p ≤ 3, are suitable models fot log(TSRV). Thus, we set that the

conditional mean of the log(TSRV) is of the form
∑3

j=1
θj log(TSRVt−j).

• We thus set up a normal mean-variance mixture model, of the form

rt = ςtǫt with log ςt = θ1 log ςt−1 + θ2 log ςt−2 + θ3 log ςt−3 + vt,

with TSRVt playing the role of ςt.

• We estimate the model parameters from the data in each training period, and

assess the quality of the various estimates—the Gaussian QL, and the van der

Warden (vdW), Wilcoxon (W), and Laplace (L) R-estimators—via their asymptotic

standard errors.
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1993 1997

QL vdW W L QL vdW W L

θ1 0.2762 0.3204 0.3525 0.4014 0.3719 0.3517 0.3677 0.3921

(0.072) (0.051) (0.070) (0.045) (0.071) (0.063) (0.080) (0.077)

θ2 0.0969 0.0988 0.0768 0.0190 0.1323 0.1586 0.1408 0.1761

(0.074) (0.061) (0.075) (0.048) (0.076) (0.066) (0.085) (0.081)

θ3 -0.0371 -0.0396 -0.0316 0.0008 0.0911 0.0669 0.0606 0.033

(0.073) (0.051) (0.070) (0.045) (0.071) (0.063) (0.080) (0.077)

USD/CHF FX rates: inference on log(TSRV). Gaussian QL and R-estimates of θ1, θ2,

and θ3 (along with their estimated standard errors).
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To assess the validity of the fitted models, we considered a standard correlogram

analysis of residuals. Below, we plot the sample residual autocorrelations of

residuals and squared residuals, implied by the Laplace R-estimator for the

training period January-September 1993. None of the plots provide any

evidence of autocorrelation outside Bartlett’s two-standard-error bands for white

noise.

Similar plots (unreported) for the QL estimator and the other R-estimators, yield

similar but less good results.

Residuals Squared Residuals

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

Lag
0 5 10 15

−0.2

0

0.2

0.4

0.6

0.8

Lag

VALIDITY-ROBUST ESTIMATION IN SEMIPARAMETRIC NONLINEAR TIME SERIES MODELS – p.78/81



Forecasting. We computed, for each day in the October-December period (still

1993 and 1997), the squared one-day-ahead prediction errors of forecasts based

on each estimator computed from the training period.

The table below provides some classical (mean and standard deviation) and

robust (median and mean absolute deviation) evaluations of the squared

prediction errors.

R-estimators (particularly the Laplace ones) appear to provide more accurate

forecasts than the QL estimators, but the improvements, in terms of location and

dispersion, are smaller in the “crisis year” 1997 than in 1993. This is probably due to

the extreme values related to the Asian crisis. Such large values, which are not

representative of the actual dynamics, badly affect prediction errors —less so,

however, with rank-based methods than with the traditional QL ones.
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1993 1997

QL vdW/QL W/QL L/QL QL vdW/QL W/QL L/QL

Mean 0.24 96% 94% 91% 0.17 100% 99% 99%

Median 0.13 97% 99% 88% 0.05 94% 97% 84%

SD 0.38 98% 97% 96% 0.56 100% 100% 98%

MAD 0.11 103% 108% 99% 0.04 96% 98% 90%

USD/CHF FX rates: mean, median, standard deviation, and mean absolute

deviation for the squared one-day-ahead prediction errors for both QL and

R-estimators. The values for the R-estimators are expressed as proportions of the

corresponding QL values.
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8.Conclusions

The methods we are proposing are

• valid (root-n consistent and asymptotically normal) under a much broader

family of densities than Gaussian QL estimators;

• simple (no derivation of tangent spaces, no need of kernel estimation of

innovation densities);

• extremely flexible (possibility of data-driven scores);

• efficient (depending on the choice of scores, between semiparametrically

efficient at selected f and “close to semiparametrically efficient” (uniformly in g);

• have a better resistance to outliers and extreme observations than Gaussian

QL estimators.

They definitely should enter econometrics daily practice.
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