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l. Infroduction and Mofivafing Example

1.1 Gaussian dynamic location-scale models

Dynamic location-scale processes are essential tools in time series econometrics,
with sophisticated classes of discrete- and continuous-tfime models such as
ARCH, AR-ARCH or AR-LARCH models, AR conditional duration models, or
discretely observed diffusions with jumps.

Probabilistic properties have been studied extensively and in great details;
statistical analysis is less exhaustive, and still presents several challenges.

Among them is the specification of underlying densities. All models considered in
the literature involve some unobserved driving noise, the density of which is often
specified to be Gaussian, although Gaussian assumptions are unrealistic in most
applications.

In particular, QL estimators erroneously are surmised to be root-n consistent and
asymptotically normal under very general conditions (actually, this requires,
essentially, finite fourth-order moments).
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1.2 Semiparametric extensions

The frouble is that those models are used, mainly, in a financial context where
heavy tails are quite common and innovation processes do not have finite fourth
moment.

As a result, Gaussian QL estimators fail to be root-n consistent and asymptotically
normal; see e.g. Hall and Yao (2003).

Moreover, even when standard asymptotics (root-n consistency and normality)
hold, Gaussian QL estimators yield good performances only if the actual density
is "nearly Gaussian”, and their efficiency rapidly deteriorates in the presence of
skewness or excess kurtosis, two characteristics which are quite common in
financial data.,

Finally, Gaussian QL estimators are highly nonrobust, and can be severely
distorted by a small number of outliers.

Those pitfalls have been stressed by many authors—Linton (1993) for ARCH
models, Drost and Klaassen (1997) for GARCH, Hall and Yao (2003) for
heavy-tailed ARCH and GARCH, Drost and Werker (2004) for duration models,
Francg and Zakoian (2010, 2014) for LARCH and GARCH, ...
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Remedies?

e Replacing the Gaussian reference density with more appropriate pseudo
densities (e.g. Student ones), defining non-Gaussian QL estimators does not work:
Fisher-consistecy under misspecified densities is lost, leading o root-n inconsistent
estimates.

e The bootstrap approach by Hall and Yao (2003) is recovering, under certain
conditions, the non-Gaussian asymptotic distribution of the Gaussian QL
estimator but does not restore root-n consistency, hence does not remedy the
lack of rate-optimality of the estimator.
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e A semiparametric approach, along the standard lines of Bickel, Klaassen,
Wellner and Ritov (actually restricted to independent observations; the
fime-series case is treated by Drost, Klaassen and Werker (1997)) under which the
innovation density—call it g—remains unspecified is more realistic highly
advisable.

Typical examples of that approach are Linton (1993), Wefelmeyer (1996), Drost
and Klaassen (1997), Drost, Klaassen and Werker (1997), and Drost, and
Werker (2004).

Standard as it is, not without serious difficulties: methodologically and
computationally heavy; distinct possible semiparametric extensions inducing
distinct efficient estimators, the validity of which depends on the semiparametric
model adopted.
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1.3 Discretely observed non-Gaussian Ornstein-Uhlenbeck processes (1)

A motivating example

The Ornstein-Uhlenbeck process Y has dynamics
dYS — _GYSdS _|_ dLs.

Instead of the usual assumption that L is Brownian motion (which leads to
Gaussian AR-type discretely observed processes), let us assume, more generally,
that Ls is some Lévy process.

This includes Lévy processes with jumps, such as compound Poisson processes,
which are typically considered in the analysis of the (realized) volatility of
financial assets: see, e.g., Barndorff-Nielsen and Shepard (2001).
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Suppose we are given equally spaced discrete-time observations

{Y07 Yh7 Y2h7 "'7Y’nh}

of Y, where h is the time lag between two consecutive observations. It can be
shown that

Yin = m(0)Y—1yn +v(0)ern t €,

where the ¢, s are independently and identically distributed, with some
probability density g,

m(0) = exp{—6h}, and v?%(0) = (1 — exp{—260h})/26.
In the classical case under which L is Brownian motion, e, is standard normal,
m(0)Y—1)n = E[Yn|Y(z—1)n] and v?(0) = Var[Yin|Yie—1)n]

are the conditional mean and variance, respectively, of Y;y,.

Call this the Gaussian case.
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In the general Lévy-driven case, both the distribution of the Lévy process L, and
the value of 8 enter the characterization of the discrete-time innovation
density g, generating a complex class of possible distributions.

Several semiparametric extensions of the Gaussian case therefore have been
considered in the literature: they all consider the model equation

Yin =m(0)Y—1)n +v(0)ern T EZ,

with
m(0) = exp{—6h}, and v?%(0) = (1 — exp{—260h})/26.

and independently and identically distributed ¢;;,’s having density g, where
either
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independently and identically distributed ¢;;, s having density g, where either
() g inthe family Gg of all nonvanishing densities (g(z) > 0 for all z),

(i) g inthe family Gy Of all densities (Wefelmeyer (1996)) with mean zero,
variance one, and finite moments of order four,

(i) g inthe family G Of all densities (Hallin, Koell and Werker (2000)) with
(median zero and)

—1 0 1 o'e)
/ g(z)dz = / g(z)dz = / g(2z)dz = / g(z)dz=1/4, or
—00 —1 0 1

(iv) g inthe family Gy Of all densities (Hallin, Koell and Werker (2000)) with

(median zero and)
0 1
/ g(z)dz = / g(z)dz =1/2.
— 00 —1

Call £y, - - -, Eiv) . respectively, the resulting semiparametric models.

VALIDITY-ROBUST ESTIMATION IN SEMIPARAMETRIC NONLINEAR TIME SERIES MODELS — p.9/81



Note that the family Gg contains the other three, and contains the innovation
densities of all discretized versions of the original process; there is N0 guarantee,

though, That for every density g in Go (N G\wef- GHKW 1+ OF GHKW2) There exists a
Lévy process such that the discretized version of Y has innovation density g.

The standard Bickel et al. semiparametric approach moreover requires g to
satisfy some regularity assumptions: g should have finite variance, and be
absolutely continuous, with (almost everywhere) derivative g, such that

oo

/ (9(2)/9(2))?g(2)dz < 0o and / (1+29(2)/9(2))?g(2)dz < oo,

©.@) o

namely, g has finite Fisher information for location and for scale—which is less
demanding, though, than finite fourth-order moments.
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That standard semiparametric approach can be described in three steps.

e Step (a) consists in establishing the so-called ULAN (Uniform Local Asymptotic
Normality) property for the fixed-g submodels. Under very general assumptions
on the density g, this property indeed holds here, with a cenfral sequence of the
form

(n) 1 [ 9emi9) g(en(6)) Do (6) (e (0))
VP U w0 teon@) 0 oy (O ) )

where e, (0) := (Yin — m(0)Y(;—1)n)/v(0).

Note that the Gaussian QL is obtained as the solution of the Gaussian likelihood
equation, here reducing fo

Al (9, ) = fZ{ 9(9) con (O)Yi1-1n + = 5 (e%h<9>—1)} =0,

where ¢ as usual stands for the standard Gaussian density.
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e Step (b) requires a theoretical derivation of the so-called tangent space
projection A*(") (9, ¢) (the semiparametrically efficient, at g and 6, central
sequence) of A(™) (8, g).

Tangent space projections are model-specific, and their derivation in general is
far from trivial,

e Findlly, in step (c) those semiparametrically efficient centfral sequences are 1o
be treated in the same way as ordinary central sequences—thatis, in a point
estimation context, essentially, as log-likelihood gradients, yielding estimatfing
equations of the form A*(") (6, g) = 0 or enfering the construction of one-step
solutions to the latter.
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Depending on the semiparametric model adopted, one obtains in step (b) the
following results.

() For &), the dependence on 6 of the scale does not bring any
information: the model is perfectly equivalent 1o an AR(1) model with
autoregressive parameter m(6) and unspecified innovation density. Those
models are well known to be adapfive—that is, their semiparametrically
efficient central sequences coincide (for all g and 8) with their
“parametric” central sequences. As a result, we obtain here

1~ 9gm(0) §(ewn(0))

() (g gy — L |
SOOI TE 20 glew@) "

VALIDITY-ROBUST ESTIMATION IN SEMIPARAMETRIC NONLINEAR TIME SERIES MODELS —p.13/81



(i) For &gy, we have

A*(n) (97 g) . L { 89?7’1,(9) g(eth(e)) Y(t—l)h

- v(0) (e (0))
+c; 1 (0)99v(0) (v2(0)e3, (6) — v(60))

—ﬂ3€th(9)}

t=1

with
cg(0) = (jia — v*(0))v(0) — 33,

fi3 and 14 the empirical moments of order 3 and 4 of the ¢, (0)’s.
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(i) For &;44). denoting by E4 (-) expectation under g, we have

[Yie—1yn — Eg(Yz—1)n)]

«(n) 1 [ 0em(0) §len(0))
AT 09) { o(0) 9en(9))

X sgn(efh(G) — 1) sgn(e:n(0))Eqg [Y(tl)h]}°
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(iv) fhe result for £;,,). with the same notafion and

0 —1
d = / g(z)dz — / 9(z)dz,
—1 — 00

similarly follows:

«(n €t 9
A (0,g) = IZ{ S Y i = B (Ya—un)

Opv(0)
+4 o(0)
. 3(9(1) +g(=1) sen(e, (0) = 1) — 6(9(1) + g(=1)) sgn(eun (9))
1 — 462
a2 ) 90 = 2002 IED) e, () (Vom0
a%ge) 2(9(1) _19(__41;2) ~400) 2 0) - B, (Y(H)h)]}_
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This calls for several immediate remarks.

(1) First, the semiparametrically efficient central sequences A*(™) (9, g) are
considerably more complicated than A(™) (9, g); their derivation is nontrivial,
model-specific, to be performed on a case-by-case basis.

(2) Second, semiparametrically efficient central sequences depend on g and its
derivative g, both unknown. For f #£ g, typically,

Eq[A*(™) (0, )] # 0

(violating the Fisher consistency condition), so that estimators based on
A*(") (@, f) are not root-n consistent,

In order o restore root-n consistency, kernel estimates of both ¢ and ¢ have to be
computed and plugged-in into A*(™) (9, g), yielding A*(") (9, (™)), on which
(step (c)) standard semiparametric estimators are based.

This implies careful bandwidth selection and some additional niceties such as
sample splitting. Moreover, kernel estimation of g and g is unlikely to produce
good results in small and moderately large samples.
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(3) Third, the semiparametric extensions considered in ()-(iv) all are equally
plausible, offering little guidelines for choosing any one of them rather than the
ofher: £(;) is quite general, but does not exploit the dependence on 6 of the
scale; £(;; requires finite fourth-order moments; £(;;;) and &;,,) only require
second-order moments, but m(0) and v?(0) are losing their interpretations in
tferms of conditional mean and variance.

(4) On top of that, if the actual model liesin £,y but not in &)

,7" = (@),...,(w)), the semiparametrically efficient central sequence
associated with £y again is losing Fisher consistency. The choice of the “right”
semiparametric extension thus is both crucial and problematic, the only “riskless
choice” being that of £;).
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The objective of this talk is To propose another semiparametric approach, based
on residual ranks (the ranks of the €45, ’s), which avoids the derivation of
complicated tangent space projections, does not require estimafing any density
function g, and remains valid under minimal regularity assumptions (those
guaranteeing finite Fisher informnation and ULAN).

Moreover, simple data-driven scores (accounting, for instance, for actual
skewness and kurtosis) can be used, allowing for much flexibility in the tuning of
asymptotic performances and improving a lot over the Gaussian methods.
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1.4 R-estimation: an alternative semiparametric approach

Essentially, our methodology proceeds along the same steps as in the standard
semiparametric approach, with two fundamental differences at step (b).

First, a reference density f (rather than the actual density g) is adopted to derive
the central sequence A (9, f).

Second, A(™ (9, f) is projected onto the o-field generated by the ranks of the
e:n S (rather than projected along the tangent spaces).

In a nutshell, our method consists in the following three steps:

(a") establishing ULAN, with central sequence A(™) (9, g), for all g € G (where
g C Go contains all densities satisfying the regularity assumptions required
for ULAN to hold);

(b") choosing some reference f € G and projecting A(™) (9, f) onto the o-field
generated by the ranks of the ¢, 's—thus obtaining the so-called
rank-based central sequence A(™) (8, f);

(c") based on A(™) (9, f) rather than A*(™) (g, §(™)), constructing a root-n
consistent and asymptotically normal one-step R-estimator.
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Performances (under g), of course, depend on the selected reference density f:
the “closer” to g, the better.

e The choice of f can be made by the econometrician according to her/his
prior preferences or past experience.

e [T also can be data-driven as soon as it only depends on the order stafistic of
the ¢,5,’s. For instance, letting f = (™), where §(™) is a kernel estimator of g, yields
an R-estimator which is semiparametrically efficient under any g € G, thus
matching the performance of standard semiparametric estimatfion in the Bickel
et al. style; contrary to the latfter, it does not require sample splitting, tough,
thanks o the independence between the ranks and the order statistic.

e Computationally less demanding choices, avoiding kernel density estimation,
are also possible; for instance, a data-driven reference density f belonging to
the family of skew-t densities can be obtained by estimating (via skew-t
maximum likelihood) a degree of freedom and a skewness coefficient. Although
the resulting f does not attempt to recover the actual g, it does account for ifs
skewness and kurtfosis.
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Other attempts have been made to infroduce R-estimation in the context of
fime series models: see, among others. The estimators developed there,
however, mostly apply to ARMA models. Moreover, they rely on an extension of
the method introduced by Jaeckel (1972) for linear regression with independent
observations. Contrary to the original Hodges-Lehmann (1956) definition,
Jaeckel’s R-estimators are based on somewhat hybrid objective functions which
combine the residual ranks and the residuals themselves. In the time series
settings considered in this paper, Jaeckel-type objective functions do not follow
from any solid decision-theoretic invariance argument, and their equivalence to
the Hodges-Lehmann approach is unlikely to hold.

In contrast to the latter, our R-estimators are genuinely rank-based (measurable
with respect to the o-field generated by the ranks), and have a clear link with
invariance, hence with semiparametric efficiency at the reference density: see
Hallin and Werker (2003).
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1.5 Mofivating example (confinued)

We conclude by showing how our rank-based procedures apply and yield a
root-n consistent and asymptotically normal estimator of the parameter 6, even
in the presence of misspecified innovation density (f # g).

In the very general semiparametric experiment £(;) (completely unspecified
density g), the central sequence, at reference density f with cumulative
distribution function F', takes the form

n i-1,(n) _ 1 1 - f(een (0)
A (g, f) = \/_ZQ 1 SR Vv 8602v2(6) Z (1+€th(9)m>

with (writing e+ (0) for e, (0) := (Yin — m(0)Y(1—1)n)/v(0))

(n) f et(0))
i n— Z +(0)) et_z(G).

t= z—|—1
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Projecting that central sequence onfo the ranks yields

n—1
AM (0, )= vny ot
=1

with
i (n)
. 1 R
(n) 1 1 - f(F (nil)) 1 Ri(sn)‘ (n)
"= F~ — | —m”
~i T s | Z R n+1 "
t=i+1 f F—1 nzrl
where R{"™ denotes the rank of egz) (6) among eﬁf‘)(e), . eﬁf}?(@), and m(™) and

s(") are exact standardizing constants.
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In the particular case of a Gaussian reference density, j;(”z.) takes the form of a
van der Waerden autocorrelation coefficient

n (n) R —1
SCON [ By 1 [ e (n) (n)
Tvaw;i "= " — g E:Cb <n+1)q) n 1 — Myqw (vdW) )

t=141

where m\(/g\)N = O(n~1) can be omitted and

n

Q13 (10 (12)) o

j=1

can be replaced with

(0 ()

as A(™) only needs to be defined up to op (1) quantities.
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The huge advantage of A(™) (9, f) over A (9, f) is that its Fisher consistency is

robust to misspecification: while A(™) (6, f) does not have expectation zero
under density g unless f = g, the expectation of A(™) (9, f), which does not

depend on g, remains zero for f # g; hence estimators derived from g<n>(9, f).

contrary to those derived from A*(™) (9, ¢), remain root-n consistent and
asymptotically normal even if f # g.
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2. Model setting and main assumptions

Let Y™ .= (Y_411,...,Y0,Y1,..., Y4,..., Yy, be the finite realization of some
stationary real-valued discrete-time process Y := {Y;;t € Z} safisfying
Yi=m(Y¢-1,0) +v(Yi_1,0)cs

with Y 1:= (Y%_l, ce ,Y;g_q).

The functions y — m(y, 8) and y — v(y, ), y € R4, are specified;

0 = (01,...,0p) isthe prameter of inferest; {e;t € Z} is an independently and
idenftically distributed (i.i.d.) process with unspecified density g € G; e and Y}, are
mutually independent for all ¢ > ¢/,
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The interpretation of m(y, 8) and v(y, 8) depends on g:

e if g is assumed to have mean zero and variance one, then m(y, @) is the mean,
and v(y, @) the standard error, of Y; conditionalon Y;_; = y; thisis the
fraditional specification

e if g is assumed to have median zero and inferquartile range one, m(y, 0) is the
median, and v(y, @) the interquartile range, of Y; conditionalon Y;_1 = y.

Denote by Pé”; the joint distribution, under parameter value @ and density g,
of Y (1)

Since different (and mostly arbitrary) choices of G may lead to different fangent
space projections and definitions of semiparametric efficiency we hereafter
consider for G the most general choice Gy of the family of all nonvanishing
densities over the real line.
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Assumption (A). The functions 8 — m(y, 8) and 8 — v(y, 8) are differentiable for
all y, with gradients m(y, 8) := gradgy m(y, 8) and v(y, 0) := grad, v(y, 0).
Moreover, denoting by Eg , expectafions under ng;, both Eg_4[r(Y:—1,0)] and
Eg 4v(Y¢—1,0)] exist and are finite.

Assumption (B). (B1) For all z € R, the density g(x) is strictly positive.

(B2) The mapping = — g(x) is absolutely confinuous on finite infervals, i.e. there
exists an a.e. derivative g such that, for all —oco < a < b < oo,

b
g(a)—g(b)Z/ g9(z)dz.,

(B3) Letting ¢4 (x) := —g(x)/g(x) and ¢4 (z) := xp4(x) — 1, The Fisher information

for location, )
I1(g) ==/¢g(x)g(a?)da:,
R

and the Fisher information for scale,
I2(g) == /wﬁ (z)g(z)dz,
R

exist and are finite. Cauchy-Schwarz then implies that,

I12(g) = I21(g) := /aﬁcbﬁ(a?)g(x)d%
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Denote by
Z1(0) :=(Ye —m(Yt-1,0))/v(Yi_1,0)

the residuals associated with the parameter value 6. Clearly,
e the hypothesis Hé”): parameter value is 8 holds iff the residuals Z;(0) are i.i.d.

e the hypothesis Hé”): parameter value is 8 and innovation density is g holds iff
the residuals Z;(0) are i.i.d. with density g
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3. Uniform local asymptotic normality and ranks

Defining
A(n) (9, g) = n_1/2 Z i(Zt, Zt—l, 9, g)
t=1
and
D(0.9) = Eo,y | U2t Z-1,6,9)i (21, Z1,6,9) |,

where

. ’i)(Yt_l,e) m(Yt 1, )

W Z:,Zi—1,0 — Z:(0 Z:(0

(Zt,2e-1,6,9) 1= S = 00g(2:(6)) = S 5m=—g= 69 (Z1(6).

we make the additional assumption

Assumption (C). Forall@ € ® and g € G, () the maftrix I'(8, g) exists, is finite and
has full rank, and (i) the mapping 6 — I'(0, g) is continuous.
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The following ULAN property then holds

Proposition. Let Assumptions (A)-(C) hold. For all g € G, the parametric model
Pg(,”) is ULAN with central sequence A(™) (0, g) and information matrix T'(8, g).
More precisely, we have, forall g € G, all @ € ©, all (") such that

(") — 0 = O(n=1/2), and all bounded sequence T, € R?,

(n)
dP9<”>+n—1/2m,g 1 A (n)(g(n) L,
An L= log dP(n) — TnA (9 ag) - ETnF(eag)Tn + OP(1)7

6(n) g

and AM (0™ g) £ A (0:T(8, g)), under pit) | asn — oo,
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The inverse I'"1(8, g) of T'(8, g) settles the parametric efficiency bound at g—the
“best asymptotically achievable” covariance for a regular estimator of @ in the
parametric model where g is specified: an estimator reaching that bound then
can be based on A(™) (8, g)

» either by solving the likelihood equation A(™) (8, g) = 0, or

e asa Al (é("),g)—bosed one-step update of some preliminary root-n

consistent estimator g™ :

A

Parametric efficiency, in general, cannot be reached in the semiparametric
context where g is unspecified, and the best one can go for is the
semiparametric efficiency bound I'*~1(8, g).
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The semiparametrically efficient central sequence A*(™) (8, g)., obtained by
projecting the central sequence A () (0, g) along the so-called tangent space, is
the tool one needs to construct estimators that reach that semiparametric
efficiency bound

e As the one-step update of some preliminary root-n consistent estimator é(”) ;

5(1)

0 5(1)

+ 0712019 g axm (9™ g)

... This, however, is not implementable, as g is still unknown; accordingly, it is
replaced with

é(n) 4+ n—l/QF*—l(é(”),g(n))A*(n) (é(n)hg(n))

where §(") is some kernel estimator of g.
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As announced, in order to avoid kernel estimation of g, we rather are using the
projection A(™) (@, f) of A(™)(9, f) (f some chosen reference density) onto the
o-field generated by the ranks of the residuals Z1(0), ..., Z,(0) (projection here is
to be interpreted as condifional expectation).

e Computing that projection is easy: it has been shown (Hallin and Werker 2003)
that it can be obtained very simply by substituting, in A(™) (8, f),

1 (Stiel) ) for  Z:(0)

where R:(0) is the rank of Z;(8) among Z1(0). ..., Z,(0) (the so-called
approximate score form).

No painful tangent space computation here! In case A (™) (0, f) involves infinitely
many lagged Z;:(0)’s, adequate truncations can be performed.
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e Obviously,
E[AM™ (0, f)] =Ef[AM (0, f)] =0

(expectation of a conditional expectation). The distribution-freeness of ranks
then entails (Fisher consistency) that also

B,(AM (6, /)] =0,

for any g: therefore, estimators based on é(”)(e, f). unlike those based on

A*(M) (@, f), remain root-n consistent under any Pé"g).

e Those estimators are reaching the semiparametric efficiency bound associated
with f if g and f coincide—we say that they are semiparametrically efficient af f.
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More precisely, it can be shown that

Proposition. Let Assumptions (A)-(E) be satisfied. Denote by A*(™) (@, f) a
semiparametrically efficient central sequence for PJ(C”) , and by T*(™) (@, f) its

covariagnce matrix under Pé"}. Then,

AM (6, f) — A*™) (8, f) = op(1) underPy",
and
lim T (g, f) = lim T*") (@, f) = T*(0, f),
where T'(") (9, f) is the variance (does not depend on g) of A(™) (8, f) and
I'* (0, f) is the semiparametric information matrix (af density f).

The asymptotic equivalence, under Pé”}, of A*(™) (9, f) and A(™) (@, f) implies
that the latter can be considered a rank-lbased version of the semiparameftrically
efficient (at f) central sequence.
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4. R-estimation

4.1 Theoretical construction
As a test stafistic, the quadratic form
Qry (80, f) == A (80, /)T (80, F)A™ (60, f)

provides a test of the null hypothesis 8 = 8¢ (with unspecified g); that test is is
locally and asymptotically optimal against 8 #£ 8¢ alternatives with density f.

Therefore, it would be natural to define an R-estimator of 8 as the minimizer, with
respect 1o 6, of Q(”)(B f) = A0, HT*=1(6, fAa™ (0, f).

Despite its simplicity and infuitive appeadl, this definition, which in a much simpler
context goes back to Hodges and Lehmann (1956), often runs into serious
numerical difficulties related with the non-convex form of 6 — Q(")(G f).

especially when the dimension of the parameter 6 gefts large.
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Let 9( 2 and I‘Ec 2 denote an arbitrary root-n consistent (under P(”)) estimartor
of 8 and a consistent estimator of I'* (0, f), respectively.

(Assume moreover that é(") is asymptofically discrefe.)

Assumption (F). Under P"), as n — oo,
(i) 9( ™| is A root-n con3|sTenT and asymptotically discrete estimator of 9,

(D I‘Ec ") IS a consistent estimator of the cross-information matrix

£(©./.9) = lim Bq,, |A™(6.) (é“”(e,g))/} ,

n—o

(methods exist for the construction of such estimators), and

(i) g issuch that (asymptofic linearity)
é(n) (9 + n_l/QTy f) — é(n) (97 f) — _F(07 f7 g)T + OP(l)'

Note that, for f = ¢, (0, f, f) =T*(0, f) =T*(0, g).

VALIDITY-ROBUST ESTIMATION IN SEMIPARAMETRIC NONLINEAR TIME SERIES MODELS — p.39/81



Proposition. Lef Assumptions (A)-(F) hold. The one-step R-estimator
() .— 9™ 4 p=1/2(PU) T A M) g™
0 =" +n7t/2(r, ) AMO, ),
under Pg‘;, is root-n consistent and asymptotically normal, with
n'/? (8" — 8) = N (0,07 (6, £,9)T7 (6, /T (6, £.9))
In particular, under under P{™)

0,f’

n'/?(8" - 6) = N (0,T71(6, f)).
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4.2 Implementation details.

e Choosing a preliminary estimator
A possible candidate for 8" in part (i) of Assumption (F—provided that one s
willing to assume finite fourth-order moments—is the Gaussian QL estimator.

More robust alternatives are highly recommended, though, such as the LAD
estimator of Peng and Yao (2003) for ARCH and GARCH-type models, the
non-Gaussian QL estimator introduced in Fan, Qi, and Xiu (2014) or, in the
presence of outliers and data contamination, the bounded-influence estimators
by Mancini, Ronchetti, and Trojani (2005).

The impact of that choice is limited, though. In practice, indeed, the one-step
5™ is to be iterated (Q;”)being used as the preliminary estimator in a

update of 6

further one-step update) until it stabilizes numerically. Such iterations do not
modify the asymptotic behavior of the R-estimator, but they do improve on its
finite-sample performances: this is in accordance with traditional
Newton-Raphson practice.
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e Choosing the score (the reference density): a data-driven approach

While the choice of the reference density f has no impact on the consistency
properties of the corresponding R-estimator, it has a direct influence on ifs
performances, both for finite n as for n — oo; the “closer” f is to the actual
density g, the better the performance for Qgcn).

An important advantage of R-estimation over all other methods is that the
selection of f can be data-driven as long as it is based on the order statistic of
the residuails.

Asymptotically optimal choices of f, in that respect, are the many possible (order
statistic-based) kernel estimators of g—which moreover do not require any
sample-splitting precautions. As already explained, such choice is of theoretical
rather than practical interest, and the fact that estimating g is compulsory in the
standard semiparametric approach of Bickel et al. (1993) is one of its main
drawbacks. A distinctive feature of R-estimators is the possibility of a much more
flexible selection of f.

For insfance, we propose selecting f by fitting a parameftric density fo the (order
statistic of the) residuals associated with the preliminary estimator.
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If skewness and kurtosis are to be accounted for, a convenient family of densities
is the family of skew-t distribution (Azzalini and Capitanio 2003), with densities of
the form

v+1
v+ 22

2 1/2
hw(x) = =ty (2)Ty+1 (az( ) > forre Rand z := o~ ! (x — ),
o
indexed by w := (i, 0, a,v), where . € Ris alocation, o € ]Riar ascale,a e Ra
skewness parameter, and v > 0 the number of degrees of freedom governing
the tails; ¢, (z) and T, (z) are the density and cumulative distribution functions,
respectively, of the traditional Student distribution with v degrees of freedom.

Other parametric families of course can be considered, very much in the same
way, such as the stable family, or the so-called skew generalized error family.
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e Estimation of cross-information quantities

An important issue is the need, in part (i) of Assumption (F), for a consistent
estimator of the cross-information martrix

00,7,0) = lim B, (20,1 (2" 0.9) ]

n—oo

Constructing such an estimator is a delicate task, since I'(0, f, g) involves the
expectation, under the actual density g, which is unknown, of quantities that
themselves depend on g and f.

In the present context, the matrix I'(0, f, g) has a special structure that can be
exploited in order to simplify that estimation.
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For instance, some models (e.g., the AR or ARCH ones) yield the factorization

Lo, f,9)=J(f,9)X "' (8),

where J(f, g) is a scalar quantity depending on f and g only, while ¥ ~1(8) only
depends on 6.

More generally, T'(0, f, g) is block-diagonal, with j blocks, each of which is
enjoying a similar factorization.

A precise formulation of that simplifying assumption is as follows.
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Assumption (G). Forall@ € ® and f, g € G, the cross-information matrix I'(8, f, g)
(G1) is block-diagonal, with j full-rank blocks of the form

Ti(f,9)X7HO), ..., T (f,9)X; 1 (0)

where the scalar cross-information quantities J7;( f, g) only depend on f
and g, while the Y ;(8) matrices only dependon 8,5 =1, ...,

(G2) issuch that the mapping 8 — I'(0, f, g) is continuous on O.

VALIDITY-ROBUST ESTIMATION IN SEMIPARAMETRIC NONLINEAR TIME SERIES MODELS — p.46/81



In our location-scale models, Assumption (G), when it holds, takes the even
simpler form

Il(f7 Q)Ipl XPp1 ‘
0 ‘ IQ(fag)IPQXpQ

r'eo,f,g) = Y1(0)

where Y ~1(0) is the asymptotic covariance matrix of the Gaussian
quasi-likelinood estimator,

In particular, Assumption (&) holds with the above T'(0, f, g) as soon as G is
restricted to sysmmetric (with respect to 0) densities—an assumption which is
quite common in the literature.
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In that setting, if consistent estimators I; (f, g) and Iz (£, g) for the scalars I; (f, g)
and Ix(f, g) are available, the one-step R-es’rimo’rorg;") is defined as

r—1
1 (f>g)Ip1><p1‘ 0
~ 1
0 ‘12 (fag)IPQXPQ
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Cassart, Hallin and Paindaveine (2010) propose the following consistent
estimators. For any (A1, A2) € R?, let

N (T ~(n )\ I O ~(n
57 () 1= 0 1/ @) (AT A", p);
0 ‘ A2 psy xps

the desired estimators of 11 (f, g) and Is( f, g) then are

(11 (£,9), I2(£,9)) == (AP~ A5) 1),
where

( (n) )\(n)) .

*1

( it {2 @)y 1@ 0™ (0w, 0)A™ 6™ (n,0) <0},
A1 ERT

inf {/\ 1AM @™y <<”>>T<é<"><o,/\2>>A<n><é<”><o,A2>><0}>
Ao ERT -
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5. Theorefical examples

5.1 Discrete-time models

(a) ARCH(qg) Consider the class of models with dynamics of the form

a 1/2
Y; = (1+Zejy;2_1) €t,
j=1

where the ¢;'s are i.i.d. with density g, 6; > 0forj =1, ...,q, and 23:1 0; < pfor
some p < 1. This model is ULAN, with central sequence

n t—1
1 Yy (Z:(0)) .
A (8,9) = — ’ -,
\/ﬁ; 1"_23:1 ertQ—j '
Y2,

where 0 := (61, ...,0,) and Z;(0) := Yt/(l + 23:1 9jY;2_1)1/2
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The definifion of a rank-based cenfral sequence requires (Y;—1, ..., Yi—4) O be
expressed in terms of a finite numiber of past shocks.

This is possible
e Via A Volterra series expansion, or

e via a simple recurrence. Fort =1, let Zf”)(e) = Y7, that is, assume (arbitrarily,
bout this has no impact asymptotically) the unobserved inifial values Y_, ..., Yp TO

be equal to zero. This recursively yields the n-tuple Zf”) 9), ..., zn) (0), with ranks

Rgn) (8), ..., Rt (8). Consider the problem of a reconstruction of A(™) (@, f) (f
some chosen reference density) based on those ranks. Since, by
definition, Y1 = Zf”)(e), setY := F_l(Rgn)(H)/(n + 1)), start the recurrence

d 1/2 r(™ g
Y= (1+ZHjX?_j) F (;LT(l)> , t2>2
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then define

(R (0) (n) Y7
Ao )= LN o (F (7))~ (5
A (’f)_ﬁz 1+Zj’ 0,2 :

J~t—j

— y2

where

My ) = wa( (n+1))

It can be shown that m; ()2) is o(n—1/2). The asymptotic covariance T'* (8, f) of

A™) (6, f) under HY™ (which is also the semiparametric information matrix

under Hé”)) is of the form I> (f)X—1(8), where the ¢ x g-matrix Y —1(8) is the
Gaussian information matrix given by Kristensen and Rahbek (2005)
(Theorem 2.1).

VALIDITY-ROBUST ESTIMATION IN SEMIPARAMETRIC NONLINEAR TIME SERIES MODELS — p.52/81



(b) AR(p)-LARCH(g) Consider the discrete-time bilinear process with dynamics

p q
Y: ZZﬂjYi—ij 1+ZﬁzYt—l €t,

where the ¢;'s are i.i.d. with density g, and 8 = (¥4, ..., Yy, b1, ..., Bq). (If standard
conditions are safisfied), the ULAN central sequence for 8 reads

( e )

¢g (4¢(0))
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A rank-based central sequence é(") (0, f) for reference density f is obtained by
replacing, in A(m) (@, f), the residual Z;(0) by F—l(Rﬁn) (8)/(n+ 1)), for every t.

In the AR(T)-LARCH(1) case, with dynamics

Ye =91+ (14 BYi—1)e teZ,

which is ULAN with central sequence

AM (9 g) = = — [ g (20) Yi_1
©9 =752 o (Zi) | 1+ BYi

t=1

where Z; = Z;(0) := (Y — 9Y:—1)/(1 4+ BY:—_1), thisis achieved, again, either via
a truncated Volterra expansion of Yz in terms of ifs innovations, or a recurrence
producing a rank-based “reconstruction” Y of Y;. This yields
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R{™ () ()

INQICH m— " T Y
~ ’ n [ B o) () 1+ 8Y 1
t=1 | vy [ F o £.(2)
where n ,
m( —1 v
M)~ Z¢f (F (n+1))
=1
and

i = wa( (n+1>)

(n) (n) —1/2
It can be shown that both m ") and m{*,  are o(n / ) hence can be

omitted for n large. The asymptotic covariance T* (0, f) of A(™) (9, f) under

Hg”) which is also the semiparametric information matrix under H(”}

I (f)Ipl Xp1
0 ‘ 12(f)Ip2><p2

~1(0)

where p1 = p, p2 = ¢. and Y —1(8) is the Gaussian information matrix as in
Chebana and Laib (2010).
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(c) Autoregressive conditional duration (ACD) models for irregularly sampled
data

As in the seminal paper of Engle and Russell (1998), let Y; denote the duration
between some (i — 1)-th and i-th events (e.g., the fime elapsed between fwo
successive transactions of some asset); let F;_1 denote the information up to

and including event (i — 1), and denote by ¥;_; := E(Y;|F;—1) the expected
conditional duration.

Then, for 8 = (3, ~), define the accelerated fime process
Yi=¢%¥Y;_1, With ¥, 1 =W¥(Z;,0) =14+ 8Y;,_1 +y¥;_2,

where the ¢;’s are i.i.d., positive, with density g.
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Engle and Russell (1998) propose a QL estimation procedure (which in this case is
based on an exponential reference density), while Drost and Werker (2004)
intfroduce the class of semiparametric ACD models (which does not specifiy any
innovation density) and rely on the standard Bickel et al. semiparametric
estimation method.

We rather propose here a class of R-estimators for those duration models. First
note that the ULAN central sequence for ACD models actually is that of a
dynamic scale model for Y;:

Y,_
A™) (9, g) = Z ¥q(Zi(6)) 1
\/_ 1+8Y;,—1 +9¥;_2 W, o

where ZZ(O) = Y:L/\I/z_l(e)
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Similar to the recursion for the ARCH(q) case, arbitrarily putting, fort =1,
Zf”)(e) = Y1 yields ¥y = 1 and an n-tuple Zf”)(e), .., Z™ (8) whose ranks are
R{™(0),..., R (). Since Y1 = Z\™ (), define Y, := F~1(R{"™(8)/n + 1), and
start the recurrence

Yi=9 1 F Y R™ (@)/n+1), i>2 where ¥, 1 =1+8Y: 1+7¥; o

N

Finally, the rank-based central sequence (for reference density f) is

o v (PR @M D) [y
A n
(6, f) = NG Z 14+8Y -1 +7¥;—2 W2

Since innovations are nonnegative, typical candidate reference densities here
are the Gamma, Weibull, or Burr densities.
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9.2 Discretely observed contfinuous-time models

Affine-jump diffusion processes are central to the financial literature. Their main
characteristic is that the conditional cumulant generatfing function is
exponential-affine. As a result, the condifional mean and the conditional
variance of the discrete-time observed process are also affine and are known in
closed-form. These features can be exploited to derive semiparameftric dynamic
location-scale models for the process observed at discrete-time points.

(d) Discretely observed mean-reverting jump diffusion

In the class of Lévy processes, let us consider the Poisson-Gaussian process Y,
which is solution to equation

dYs = —kYsds + dWs + dZs,

where dW; is standard Brownian motion and dZs = Jsdn(s), with 7« a Poisson
process with intensity 1, and i.i.d. N («, n?) jump sizes Js.
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The exact first and second conditional moments of Y are available in closed
form, yielding, for the discretely observed n-tuple {Yy, Yi, Yon, ..., Yon }.

ah
E(Yin|Yi—1)n) = — (1 — exp(—+rh)) + Y4_1), exp(—krh)

and
1+ 772
2K

Var(Yen [Y—1yn) = (1 — exp(—2rh)) .

That class of models has been considered by Das (2002) in the dynamic analysis
of bond markets. Das points out that the bond market often overreacts, i.e.,
exhibits large moves in the interest rate followed by speedy reversals. The
parameter k measures the speed of mean reversion, and plays the main role:the
half-life = is a function of k, being the solution to exp{—x7} = 0.5.
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Assume the discrete-time process {Y;,;t € Z} is observed over n + 1 periods,
yielding (Yo, Yn, Yon, ..., Yun). Das” estimation of  is essentially based on an
approximate version of the dynamic location-scale model

1/2

1 2
Rl (1 — exp(—2kh)) €th

2K

ah
Yin, = ?(1 — exp(—kh)) + Y(;_1)n exp(—rh) +

In Das’” approach, the density g of €4, is supposed to be standard normal.

If that Gaussian assumption is to be abandoned, several semiparametric
extensions are possible. The situation is actually pretty much the same as in the
motivafing example and, for the same reasons, turning to the residual ranks
appears as the safest attitude.
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The model (with innovation density g safisfying the usual regularity assumptions) is
ULAN with respect to 8 := (k, a, 1), with central sequence

L& Vg (Zt)B1(0) + ¢g(Zt)x*Y(1—1),82(0) — bg(Z1)B2(0)53(6)
A, == b9 (Z1)5a(6)
=1 Yg(Z+)B5(0)

where
Yip — 22 (1 — exp(—rh)) — exp(—Kh)Y(;_1)n

7y = 74(0) =

)

[% (1— exp(—?mh))} v
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with

B1(6) = 3 {h(COTh(h") —-1) - K:(#ivﬁ)] ) B2(0) = oa(l —exp(hk)+ hk)
B3(8) = r~32hexp(—hr/2)[(26 +72) Snh(he)] T Bu(@) = h(1 — exp(—hr))"/

and g5(0) = n/ <2n + 772) (Coth(x) and Sinh(x) as usual stand for the hyperbolic
cotangent and sinus of x, respectively).

Canceling A(™) (9, g) yields M-estimators for @ (which are not necessarily root-n
consistent). Due to the highly nonlinear form of the estimmating equations,
moreover, numerical implementation is likely to be problematic, and even more
so is the derivation of standard semiparametric estimators in the Bickel et al. style.
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The R-estimation methods developed here thus naturally enter info the picture.
Projecting A(™) (0, f) (where f is some chosen reference density) onto the
space of residual ranks cancels its second and third components; as for the first
one, the ferms involving hyperbolic functions disappear, and only
ng(Zt)li2Y(t_1)hﬂ2(9) yields a nondegenerate projection. This means that neither
« NOor n can be estimated atf root-n rate when the density g of €;;, remains
completely unspecified.

This is intuitively clear, as o and n only appear in the innovation’s unconditionadl
location and scale, while the ranks are invariant to location and scale
perturbations.

For reference density f, the projection onto the o-algebra of residual ranks of the
component of the central sequence associated with k thus coincides (up to an
irelevant multiplicative constant) with that of n—1/2 Yo 05 (Ze)Y(i—1)n.
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More formally, let Ri”) (@) denote the rank of Z;(0). That rank is the same as the
rank Rﬁ”)(m) of Zj(m) = Yip — exp(—kh)Y(:_1),. Then, arank-based central
sequence emerges, of the form (up to a mulfiplicative constant and op (1) terms)

on n (n) (n)
AM) (g, f) = nl/? ZZ_;exp(—i/fh)(n—i)1 t;1 (¢f (F_l (R; +(f)))F1 (ft—ﬂ:;) _m;”))

where mgcn) = [n(n — 1)] 71 Zlgz’l;ﬁiggn ¢r(F~ (i1 /n+1))F~(ia/n+ 1), with,

under Hé”), asymptotic variance I'*(0, f) = Il(f)/<1 — exp(—2/£h)),'
semiparametric efficiency here refers to the discrete-time model (??) with
completely unspecified innovation density g.

Our method then leads to root-n consistent R-estimators for « in the rather
sophisticated context of a discretized jump diffusion process where the jump
parameters are treated as nuisance; in that sense, our R-estimators are robust to
a misspecification of the jump process.

VALIDITY-ROBUST ESTIMATION IN SEMIPARAMETRIC NONLINEAR TIME SERIES MODELS — p.65/81



(e) Discretely observed Cox-Ingersoll-Ross (CIR) process

The CIR process Y is often considered for short-term interest rates, stochastic
volatility, or asset pricing models. It is the solution tfo the stochastic differential

eqguation
dYs = k(1 — Ys)dt + o1/ YsdWs.

In Chapter 2 of Singleton (2009), a QL estimator is defined setting a Gaussian
dynamic location-scale model for the discrete-time version of Y. It can be shown
that a semiparametric dynamic location-scale extension leads to @
semiparametric AR(1)-ARCH(1) model, whose rank-based central sequence can
e used in the construction of R-estimators.
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6. Numerical examples

6.1 Asymptotic Relative Efficiencies (ARES)

In this section, we study the (asymptotic and finite-sample) performances of
several R-estimators in the model

Tt = Gt€t with logst = 01logsr—1 + O2loggi—o + 03loge—3 + v,

where ¢; is a random variable taking values in RT, {¢;} is independent standard
normal white noise, the v;’s are i.i.d. with sfandardized density g, and e; is
independent of v, for all (s, t).

This model is related 1o the normal variance mean mixture models which are
used in modeling and forecasting the realized volafility of assets.
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We compute AREs, with respect the QL of the R-estimators based on the van der
Waerden (A" normal f), Wilcoxon (A(); logistic f), and Laplace (A(™);
double-exponential f) rank-based central sequences, under densities g in the
Johnson family (Jones and Pewsey (2009) and Ghysels and Wang (2011)).

Denote by Jsy (v, §, 4, 0)—where v and § are skewness and kurtosis parameters,
respectively, while yn and o, as usual, stand for location and scale— the general
density in that family.

For u = 0 and o = 1, suitable values of § and v are may lead to positive skewness
values as large as fen, and excess of kurfosis larger than eight.
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ARE

vdW /Ql

w/aL

L/QL

Leptokurtic

~v=0,6=085 v=0,6=1

2.567 1.755
3.245 2.124
3.433 2.033

JSU (77 57 M, O-)

Skewed Leptokurtic and Skewed

v=3,6=10 v=10,6=10 v=3,6=15 v=4,6=1

1.002 1.014 2.657 12.341
0.960 0.968 2.207 7.319
0.643 0.644 1.234 2.972
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6.2 Finite-sample performances ( in the presence of skewness and leptokurtosis)

Let us consider the semiparametric ARCH(1) model
Ve = (14+0Y72 )" ?e,

where the i.i.d. ¢;'s have unspecified density g. For each combination of
e the two parameter values § = 0.1 and 6 = 0.5, and
e three different series lengths n = 250, 500, 1000,

we simulated 2500 realizations based on a skew generalized error density g with
mean zero, standard deviation one, shape parameter one, and skewness
parameter five; such densifies are increasingly popular in finance.

e From each realization, we computed (a) the Gaussian QL estimator (QLE), (b)
the skew-t-maximum likelihood (MLE_t), (c) an R-estimator (R-QLE_skwt) based on
a QLE preliminary, and (d) an R-estimator (R-LAD_skwt) based on a LAD
preliminary.
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6.3 An empirical analysis of the USD/CHF exchange rate

An empirical analysis of the series of USD/CHF exchange rate daily log-returns
and its realized volatility, as measured by the so-called Two Scales Realized
Volatility (TSRV) series (Ait-Sahalia et al. 2005).

Dataset consists of tick-by-tick log mid prices over 24 hours of USD/CHF FX rates
provided by Olsen & Associates; log mid prices are computed as averages of the
logarithmic bid and ask quotes, obftained from the Reuters FXFX screen.

From the high-frequency quotes, we compute TSRV by summing the
high-frequency squared log-returns with slow scale of ten ticks, and daily
log-returns as ry = log P — log P;—1. where P; is the daily USD/CHF exchange rate
provided by Reuters.

We conduct our analysis on the 1993 and 1997 data.

In each year, we use the first 200 observations (from January to end of
September) as tfraining data for model estimation and diagnosis, and the |last 50
ones (from October to December) to evaluate forecasting performances.
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e Log-returns. We consider the dynamics of the process of log-returns r;
standardized by the TSRV, namely r. /T'SRV;. The resulting series has
approximately mean zero, variance close to one, and a sample partial
correlation analysis with robust standard errors (unreported) does not detect any
predictability. The Shapiro-Wilks test p-values for r; /T'S RV; are 0.896 and 0.208 for
the 1997 and 1993 dataq, respectively. Thus, we conclude that a standard normal
approximation for the ratios r; /TS RV, is supported by the data.

e Two Scales Realized Volatilities (TSRV and log(TSRV)). Turning to volatilities, we
consider the TSRV process and its log-tfransformation.

() the 1993 training period (January-September) exhibits 9 extreme values; we
label it as “standard”, and believe it expresses the typical dynamics of the TSRV;

(i) in 1997, the training period (January-September) shows 7 extreme values,
while the Asian crisis is causing 4 extreme values between October and
December (the TSRV strikes 0.3). We label this period as "non-standard”,
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1993 1997

TSRV
Jan-Sept  Oct-Dec Jan-Sept  Oct-Dec
Mean 0.112 0.088 0.094 0.096
SD 0.022 0.018 0.021 0.033
Kurtosis 3.532 2.770 5.662 20.296
q.75 — q.25 0.028 0.024 0.027 0.026
obs < qg.50 — 3xMAD 3 0 0 0
obs > q.50 + 3xMAD / 0 7 4

USD/CHF FX rates: descriptive statistics

VALIDITY-ROBUST ESTIMATION IN SEMIPARAMETRIC NONLINEAR TIME SERIES MODELS —p.74/81



1993 1997

log(TSRV)
Jan-Sept  Oct-Dec Jan-Sept  Oct-Dec
Mean -2.206 -2.451 -2.388 -2.375
SD 0.192 0.208 0.217 0.256
Kurtosis 3.421 3.212 3.634 7.982
q.75 — q.25 0.256 0.278 0.298 0.288
obs < g.50 — 3.5xMAD 4 | 2 0
obs > ¢.50 + 3.5xMAD 3 0 3 2

USD/CHF FX rates: descriptive statistics
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e The autocorrelation analysis (unreported) of the fraining data suggests that
AR(p) processes, p < 3, are suitable models fot log(TSRV). Thus, we set that the

conditional mean of the log(TSRV) is of the form ijl 6; log(TSRV_;).

e We thus set up a normal mean-variance mixture model, of the form

Tt = Gtét with logst = 011logci—1 + 02 logst—2 + 03 logsr—3 + v,
with TSRV, playing the role of ¢;.

e We estimate the model parameters from the data in each fraining period, and
assess the quality of the various estimates—the Gaussian QL, and the van der
Warden (vdW), Wilcoxon (W), and Laplace (L) R-estimators—via their asymptotic
standard errors.
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1993 1997
QL vadw W L QL vadW W L
61 02762 0.3204 0.3525 0.4014 03719 03517 03677 0.3921
0.072) (0.051) (0.070) (0.045) 0.071) (0.063) (0.080) (0.077)
62 0.0969 0.0988 0.0768 0.0190 0.1323 0.1886 0.1408 0.1761
0.074) (©0.061) (0.075) (0.048) 0.076) (0.066) (0.085) (0.081)
63 -0.0371 -0.0396 -0.0316 0.0008 0.0911 0.0669  0.0606 0.033
(0.073) (0.051) (0.070) (0.045) 0.071)  (0.063) (0.080) (0.077)

USD/CHF FX rates: inference on log(TSRV). Gaussian QL and R-estimates of 61, 65,

and 63 (along with their estimated standard errors).
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To assess the validity of the fitted models, we considered a standard correlogram
analysis of residuals. Below, we plot the sample residual autocorrelations of
residuals and squared residuals, implied by the Laplace R-estimator for the
fraining period January-September 1993. None of the plots provide any
evidence of aufocorrelation outside Bartlett’s two-standard-error bands for white
noise.

Similar plots (unreported) for the QL estimator and the other R-estimators, yield
similar but less good results.
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Forecasting. We computed, for each day in the October-December period (sfill
1993 and 1997), the squared one-day-ahead prediction errors of forecasts based
on each estimator computed from the training period.

The table below provides some classical (mean and standard deviation) and
robust (median and mean absolute deviation) evaluations of the squared
prediction errors.

R-estimators (particularly the Laplace ones) appear to provide more accurate
forecasts than the QL estimators, but the improvements, in terms of location and
dispersion, are smaller in the “crisis year” 1997 than in 1993. This is probably due to
the extreme values related to the Asian crisis. Such large values, which are not
representative of the actual dynamics, badly affect prediction errors —less so,
however, with rank-based methods than with the traditional QL ones.
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1993 1997
QL vdWw/QL W/QlL L/alL QL vdWw/QlL W/QlL L/l
Mean 0.24 96% 94% 91% 0.17 100% 99% 99%
Median 0.13 7% 99% 88% 0.05 94% 7% 84%
SD 0.38 98% 7% 96% 0.56 100% 100%  98%
MAD 0.11 103% 108%  99% 0.04 96% 98% 90%

USD/CHF FX rates: mean, median, standard deviation, and mean absolute

deviation for the squared one-day-ahead prediction errors for both QL and
R-estimators. The values for the R-estimators are expressed as proportions of the
corresponding QL values.
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8.Conclusions

The methods we are proposing are

e valid (root-n consistent and asymptotically normal) under a much broader
family of densities than Gaussian QL estimators;

e simple (no derivation of fangent spaces, no need of kernel estimation of
innovation densities);

e extremely flexible (possibility of data-driven scores);

e efficient (depending on the choice of scores, between semiparametrically
efficient at selected f and “close to semiparametrically efficient” (uniformly in g);

e have a better resistance 1o outliers and extreme observations than Gaussian
QL estimaftors.

They definitely should enter econometrics daily practice.
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