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Multivariate analysis



Multivariate location and 
scatter
• Data  where the observations are  x 1 column 

vectors

• Classical model: elliptical distribution (e.g. 
multivariate gaussian) with parameters  (location) 
and  (spread and correlation structure)

•  



Remarks

• In the multivariate setting outliers cannot be 
detected by applying outlier detection rules to each 
variable separately

• There is no natural ordering of multivariate data



Target

• identify a large portion of the outliers when they are 
present in the data: high power

• provide a small number of false alarms with good 
data (i.e. data coming from the postulated model): 
low swamping



Bivariate data



Ex. animals data set
• Consider the Animals data set containing the logarithm of 

the body and brain weight of 28 animals



(Tukey) depth
• Depth is a generalization of ranking to multivariate 

situations. It is a nonparametric notion, since it is not 
assumed that the data come from a given type of 
distribution (e.g. elliptical).

• For bivariate data, the halfspace depth of a point y is the 
smallest number of observations in any halfplane whose 
boundary passes through y. Points on the outskirts have 
low depth, whereas points in the middle get high depth



Depth in 2 dimensions

• For example, in the figure below the Tukey depth of 
the red point is 2 because the heavy line has two 
points on its left and every other line has at least two 
points on its left and right.



Example of depth contours



Bagplot of the animal data



Bagplot
• The bagplot is a bivariate generalisation of the univariate 

boxplot

• The bagplot visualizes several characteristics of the data: its 
location, spread (the size of the bag), correlation (the 
orientation of the bag), skewness (the shape of the bag and the 
outer contour), and tails (the points near the boundary of the 
outer contour and the outliers).



Bivariate boxplot based on convex hull peeling



Bivariate boxplot of the 
animals data



Bivariate boxplot of the stars data



Multivariate data



Mahalanobis distances

• If we estimate the parameters of N(µ,Σ) with  
sample mean and  unbiased sample covariance 
matrix multivariate outliers should have large 
Mahalanobis Distances (MD):

•  = (yi − )T(yi − )

• For statistical outlier detection, we thus need cut-off 
values for d2i We can also assume that µ = 0 and Σ 
= I because MD are invariant under affine 
transformations 

•  



Tolerance ellipsoid

• Its boundary contains those y-values with constant 
MD to the mean

• Classical tolerance ellipsoid

• } 

• with  the 97.5% quantile of the distirbution with  
degrees of freedom 

• We expect (for large n) that about 97.5% of the 
observations belong to the ellipsoid

•  



(Classical) tolerance ellipsoid



Scatter ratios

• Wilks showed that under the null hypothesis of no outliers

• H0 : {y1  ∼ N(µ,Σ)} ∩ {y2  ∼ N(µ,Σ)} ∩ ... ∩ {yn  ∼
N(µ,Σ)}

• the n scatter ratios

• have a distribution

•  



Outlier test

• A Bonferroni bound can be used to approximate 
the distribution of the smallest ratio  or equivalently 
of the largest squared distance 

• Test for outlyingness of the most extreme 
observations 

•  



Wilks rule

• Compute the largest squared distance 

• At level γ, label the corresponding observation an 
outlier if

• where b1−γ/n is the 1 − γ/n quantile of  the distribution

•  



Wilks rule - simulations
• 5,000 simulations for each combination of n and v. 

• Size under the null model of no contamination: N(0,I)

• Power under a location-shift contamination model for one 
outlier: y1  ∼ N(λe, I)



Wilks rule - summary
• The Wilks rule is a statistically principled criterion for multivariate outlier 

detection with good properties both in small and large samples: • 

• the probability of detecting contamination increases with the amount of 
contamination when the data contain a single outlier

• this probability approaches 1 if λ is large enough

• the actual size of the test is very close to the nominal γ when no outlier is 
present

• These goals are achieved through:

• accurate distributional results: Beta distribution

• recognition that we perform n simultaneous tests: compute the largest 
squared Mahalanobis distance

• But ...



Wilks rule - many outliers• With more than 1 outlier, what is the proportion of outliers detected 
by the Wilks rule?

• Nominal size: γ = 0.01, n = 200, v = 5. 5,000 simulations for each λ.

• Left panel: 5% of the observations are contaminated

• Right panel: 20% of the observations are contaminated

• Wilks rule is ineffective: this phenomenon is known as masking



Masking
• Masking occurs because the classical estimates  (sample mean) and 

 (unbiased sample covariance matrix) are grossly biased by the 
presence of many (extreme) outliers.

• Ex. Stars data

• The ellipses represent 0.99 probability contours. The large ellipse 
is based on  and . The small ellipse is obtained by computing 
robust high-breakdown estimates of µ and Σ!

•  



Breakdown point

• In regression we used the expression: «bounded and 
also bounded away from the boundary of the 
parameter space»

• Dispersion matrices: parameter space consists of the 
set of symmetric non negative definite matrices

• Each matrix has eigenvalues and eigenvectors.

•  «bounded and also bounded away from the boundary 
of the parameter space» means: the eigenvalues are 
bounded away from 0 and infinity

•  



Efficiency

• All affine equivariant location estimates  (when data 
are from N() have an asymptotic covariance matrix 
of the form  where  is a constant depending on the 
estimate.

• Consequence: the normal distribution efficiency of 
an affine equivariant location estimate is 
independent of  and

•  



Multivariate M estimators
• The multivariate M-estimate of location and dispersion are 

defined as the solution of the following system of equations 
(estimating equations)

  where the functions W1 and W2 need not to be equal

• If function W2 is non decreasing, the solution to this system of 
equation is called monotone multivariate M estimates, while 
if W2 is redescending the solutions are called redescending 
multivariate M-estimates 



Properties of multivariate M 
estimators

• Note that from

• we can express  as a weighted mean, with weights depending on 
the outlying measure  (weighted mean with data dependent 
weights)

• /

• Multivariate M estimates are affine equivariant and 
asymptotically have a multivariate normal distribution.

•  



Numerical computations of 
multivariate estimates

• Start with initial estimates  and  (vector of coordinate-
wise medians and the diagonal matrix with the squared 
normalized MADs of the variables in the diagonal). At 
iteration k let  and compute

• /

• )   

•  



M and S estimators

• Just as with the regression estimates where we 
aimed at making the residuals "small", we shall 
define multivariate estimates of location and 
dispersion that make the distances di small. To this 
purpose we look for and  some measure of largeness 
of  , ).

• Avoid spurious solutions: exclude solutions for 
which the smallest eigenvalue of   is zero

• If  impose constraint =1 

•  



M and S estimators

• Minimize a robust estimate of scale

• If  is an M scale estimate which satisfies

• where ρ is a smooth bounded ρ-function, we obtain the 
class of S estimates. K for consistency is chosen as

•  



Characteristics of S estimates of 
multivariate location and scatter

• Affine equivariant

• BDP , 

• Bounded influence function

• (Fisher)-consistent and asymptotically normal

• Constant c in Tukey biweight controls bdp (and eff)

• Efficiency is low

•  



MM estimators

• The MM estimator of location and shape is defined as the 
minimum of the following f function

• where ρ2 is possibly another ρ function which provides higher 
efficiency than the previous ρ at the null multivariate normal 
model. Function f is minimized with respect to µ and  for fixed .Ʃ

•  is any auxiliary robust scale estimate, however it is common to 
use  and as starting values of location and shape, those which 
come out from the S estimator (that is  and )

•  



MM estimators

• The MM estimate of scatter is given by = 

• S estimator of scale   is tuned for robustness (high bdp)

• Redescending M-estimator  is tuned for high efficiency

• Claim: highly robust and efficient!

•  



Explanation for the failure of multivariate 
MM estimators

• =200

•  =2

• δ=0.30

• shift of 3

•  



Iteration 1 in the MM loop



Iteration 4 in the MM loop



Iteration 1, 4, 7, 8 in the MM loop



MVE estimate

• If we take  (to mimic the approach that results in the 
LMS in regression) the sample median of the 
Mahalanobis distances, the resulting location and 
dispersion matrix estimate is called minimum volume 
ellipsoid (MVE) estimate

• The name comes from the fact that among all ellipsoids 
{y: d(y, µ, Ʃ)} containing at least half of the data points, 
the one given by the MVE estimate has minimum 
volume.

• The consistency rate of MVE is the same slow rate as 
the LMS (namely )

•  



MCD (Minimum covariance 
determinant)
• Idea: use a trimmed scale for  instead of an M-scale 

(as was done to obtain LTS)

• More formally, let 

• be the ordered of the squared distances  , ) and for 
define the trimmed scale as 

•  



MCD (Minimum covariance 
determinant)

• y(MCD) :=  sub-sample of n/2 ≤ h < n observations whose 
covariance matrix has the smallest determinant

• The proportionality term kMCD(h,n,v) is crucial to ensure 
consistency and (approximate) unbiasedness of

• The proportionality term is formed by an analytic component (for 
consistency) and a simulation-based component (for unbiasedness)

• The coverage h must be fixed: usually  yielding a breakdown value 
of 50% and 25% respectively.

•  



REWEIGHTED MCD

• Reweighted subsample: give weight  to observations for 
which  and weight 1 otherwise

• Claim: improve efficiency while mantaining the same 
bdp

• Again the scaling kRMCD(h,n,v) ensures consistency 
and unbiasedness

•  



Robust RMCD Distances
• The outliers are revealed by their large (squared) 

Mahalanobis distances from the robust fit:

• The robust distances do not suffer from masking

• The common suggestion is to use the 1% or 2.5% 5% 
cut-off values from the asymptotic Chi-squared 
distribution on  degrees of freedom. Ex. if 2.5% flag as 
outliers the obs. which do not belong to the robust 
tolerance ellipsoid

•  



Outlier detection
• Outlier detection based on RMCD correctly flags the 

outliers in the animals data:



Distance-distance plot
• In dimensions p > 2, we cannot draw a scatterplot or a 

tolerance ellipsoid.

• To explore the di erences between a classical and a robust ff
analysis we can draw a distance-distance plot, which plots 
the points (MDi, RDi) 



Computation of the MCD

• Exact algorithm: consider all h-subsets, compute the 
mean and covariance matrix of each, and retain the subset 
with smallest covariance determinant

• But: infeasible for large n or v

• Approximate algorithm: consider selected set of h-
subsets. The most popular algorithm is FAST-MCD 
(Rousseeuw and Van Driessen, 1999). It uses random 
initial subsets.

• Recently a deterministic algorithm DetMCD has been 
developed, which is almost a ne equivariant (Hubert et ffi
al., 2012).



Analysis of the test size of RMCD

• Monte Carlo estimate (50,000 simulations) of empirical size of 
the reweighted MCD outlier detection rule under no 
contamination and using a Bonferroni correction

• Nominal simultaneous size: 1%

• Some correction is needed to reduce the number of false 
outliers in finite samples!



Approach 1

• Calibrate the cut-off values of the distribution of 
robust distances, not just its first two moments 
(Cerioli, Riani, and Atkinson, Stat. & Comp. 2009)

• Use Beta and F distribution (Cerioli, JASA 2010)



Performance of corrected MCD

• nominal size of 1% for the test of no outliers

• Max breakdown: h = (⌊ n +  + 1)/2⌋

• Trimming at 0.975 in the reweighting step

• 5000 simulations for each combination of n and .

•  



FS: flexible power improvement

• The Forward Search (FS) relies on a fully-iterative adaptive 
trimming scheme:

• Order the data by closeness to the assumed model (for outlier 
detection: N(μ, ))

• Start with a small subset of  observations

• Move Forward: increase the number of observations m used 
for fitting the model.

• The choice of the new subset (of cardinality  + 1) is based on 
the distances computed at step 

• Continue until 

• Outliers and other observations not following the general 
structure enter at the end and can be clearly identified

•  



The FS details at step   
•  := fitting subset of  observations at step  of the FS

• We compute the estimates of the centroid and covariance 
matrix from S() and  

• These estimates yield  squared distances

• Order these squared distances and take the observations 
corresponding to the  smallest as the new subset 

•  



Theoretical results

• Cerioli, Farcomeni, and Riani, JMVA (2014) show 
that  and   are strongly consistent under the null 
model and have breakdown point 1 −  under 
contamination: 

• The FS yields consistent high-breakdown 
estimators, but with adaptive breakdown point

•  



Empirical Performance of FS Estimators 
Comparison with MCD and RMCD

• Boxplots of the values of the squared bias for the FS estimator of 
location, as a function of γ = m/n, for n = 100 (left) and n = 200 
(right). The circles over the boxplots denote the average values

• The horizontal dashed-dotted lines are associated with the squared 
bias for the MCD location estimator (upper line) and the 
Reweighted MCD (MCDr) location estimator (lower line)



The FS for outlier detection

• Importance of monitoring : a wealth of diagnostics 
can be computed and displayed along the search.

• The main tool for outlier detection is the forward 
plot of the Minimum distance among units outside 
the subset (min MD)

• If observation [ + 1] is an outlier, its distance will be 
large compared to the maximum distance of the  
observations in : peak in the forward plot of dmin().

•  



Scaled MD

• In regression we work with scaled residuals

• In multivariate analysis we scale MD as



Dependence on v and n 

• 95% points of the empirical distribution of the min. MD for 
sample sizes n=100, 200, 600 and 1000; v=1, 2, …13

Unscaled distances Scaled distances



Approximation based on order 
statistics

Comparison of 1%,  50% and 99% asymptotic envelopes for scaled distances. 
Continuous lines: envelopes found by simulation (n=100 and v=6)



Approximation based on order 
statistics n=200 v=5

Scaled 
distances

Unscaled 
distances



Approximation based on order 
statistics n=600 v=5

Scaled 
distances

Unscaled 
distances



Swiss heads data
• Six readings on the dimensions of the heads of 200 

twenty years old soldiers



Swiss heads data

• Final purpose: to study the variability in size 
and shape of young men in order to help to 
design a new protection mask

• Choice of the initial subset: we find an initial 
subset of m0 observations from the intersection 
of units inside a robust bivariate contour  for 
each pair of variables



Swiss 
heads 
data: 
SPM with 
univariate 
and 
bivariate 
boxplots



Remark on the initial definition of 
starting point
• Does not involve complicated iterative procedures

• The size of the initial subset can easily be decreased 
or increased by changing the value of the outer 
contour

• We can easily try several starting points and check 
whether the final part of the search is the same

• We can force the starting point



Monitoring min MD with envelopes



Swiss bank notes
• 6 variables are measurements of the size of the bank notes

• 100 of which are genuine and 100 are forged

• Some complications:

• Some of the notes in either group may have been misclassified

• Forged notes may not form a homogeneous group



Swiss Banknotes
• 100 are genuine and 100 are forged (n=200 v=6)

• Two(?) populations (genuine and forged notes), but with several 
outliers (different forgers?)

Both extreme 
and 

intermediate 
outliers



Swiss Banknotes
• 100 are genuine and 100 are forged

• Two(?) populations (genuine and forged notes), but with several 
outliers (different forgers?)

Both extreme 
and 

intermediate 
outliers



Analysis of the group 
of 100 fake banknotes



Monitoring min MD with envelopes



Strategy for outlier detection

• Once a signal takes place (m=m*) start 
superimposing 99% envelopes using  n=m*-1, m*, 
m*+1 up to when the trajectory is inside the 
threshold 



SBN: superimposed envelopes at 
step n=84



SBN: resuperimposed envelopes 
at step n=85



SBN: resuperimposed envelopes 
at step n=86



Forward plot of scaled MD



Example with simulated data: n=200 
p=5, 30% contamination (first 60 obs.) 
Level shift=1.2
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Example with simulated data: n=200 
p=5, 30% contamination (first 60 obs.) 
Level shift=1.2
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n=200 p=5 30% contamination Level 
shift=1.2

Output from FAST MCD (consistency correction + 
Pison correction - Real α=0.3291)



n=200 p=5 30% contamination Level 
shift=1.2
Output from reweighted MCD + Pison correction  Real 

α=0.1095)



Robust MCD distances against traditional MD 

Traditional MD
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Output from FS



Robust classification 
through the forward search

The random start approach



Swiss heads: forward plot of minMD 500 searches with 
random starting points



Swiss banknotes: 500 fwd searches (random 
starts): monitoring of minimum MD

123 searches

189 searches



Two clusters of independent 
normal variables (TC): spm



TC: forward plot of Min MD from 
200 random starts



Three clusters of correlated normal 
variables (3C)



3C: plot of groups 1 and 2



3C: forward plot of min MD from 
200 random starts



Classes of robust estimators
Three classes of estimators:

• Hard (0,1) trimming (LTS,  LMS, MCD, MVE) in which the amount 
of trimming is determined by the choice of the trimming parameter.

• Adaptive Hard Trimming. In the Forward Search (FS), the 
observations are again hard trimmed, but the amount of trimming is 
determined by the data, being found adaptively by the search. 

• Soft trimming (downweighting). M estimation and derived methods 
(S, MM, tau). rho function ensures that increasingly remote 
observations have a weight that decreases with distance from the 
centre.



Decisions which have to be taken when using soft or fixed 
hard (soft) trimming methods

• The number of subsamples to extract to each of which the model is fitted exactly.

• The maximum number of refining iterations (concentration steps), if any, within 
each subsample.

• The tolerance for the convergence of the estimate of target function  in the refining 
steps.

• The number of best subsets resulting from the refining steps to be brought to 
convergence.

• The number of refining iterations for each best subset being brought to 
convergence.

• The tolerance for the estimate of b in the refining steps for each subset being 
brought to convergence.

• The tolerance for the estimate of scale in the best subsets.

• Often these choices are not well 
documented in software



The philosophy of monitoring

• One reason for the excellent performance of the 
Forward Search is the adaptive choice of the 
trimming parameter

• Extension: MONITOR the behaviour of robust 
procedures over a range of values of this parameter

• Monitoring also helps with the choice among 
robust methods and the decisions that have to be 
made before data analysis

• These decisions are another major disincentive to 
the routine use of standard robust methods



Geyser data
2 variables

n=272



Geyser data (n=272)

• Big cluster ≈ 175 obs

• Small cluster ≈ 97 obs

Eruptions
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Robust Mahalanobis distances for
MM estimation as a function of eff from 0.5 to 0.99

For efficiencies 
less than 0.71, the 
plot reveals the 
observations from 
the smaller cluster 
as outliers



Robust Mahalanobis distances for MCD (left) 
and MVE (right) as a function of subset size

• MCD: definite indication of a break in the structure, 
here at a subset size of 244



A random start forward search analysis of
the Old Faithful data:  monitoring of min. 
Mahalanobis distance outside subset



Further analysis within each cluster to find the 
number of units belonging to each group

Three units removedTwo units removed

All units Last unit removed



Final classification from the FS



Comparison with Mclust 



Final classification from MCLUST



Another example: M5 dataset



Another example: M5 dataset
•  = 2000 observations: 1800 “good” data points, simulated on v 

= 2 (normal) variables, + 200 outliers

• Three groups with different scales

•  

Radial outliers 
around the 

groups; two 
groups strongly 

overlap



M5: 500 fwd searches (random starts): 
monitoring of minMD

3 different trajectories



We can interrogate the FS at 
selected steps: step =420
 



Step =490 



Step =780 



Final classification



Comparison with leading 
robust clustering routines

• TCLUST: mainly developed in Valladolid 
(Garcia-Escudero et al., Ann. Stat., 2008; ADAC, 
2010; Statistics and Computing 2012)



TCLUST



Issues in Tclust
• Heteroscedastic model: we need constraints on the 

covariances of the different groups 

• Three crucial aspects:
• α = trimming proportion
• k = number of groups 
• c = restriction factor



State of the art for the choice of k and α 
• Classification trimmed likelihood (CTL) curves

• Swiss banknotes • M5 datasets

Suggests k=2 and α=0.1 k=3 but α not clear 

1

2

3, 4



All routines for robust estimators are 
implemented in the MATLAB toolbox FSDA 
downloadable from http://www.riani.it/MATLAB 
or from  http://fsda.jrc.ec.europa.eu 

http://www.riani.it/MATLAB

