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Outline of the course

@ 1. General notions of robustness

@ 2. Robustness for univariate data

@ 3. Robust multivariate methods

@ 4. Robust regression

@ 5. Robust principal component analysis
@ 6. Inference

@ 7. Multivariate and functional depth

@ 8. High dimensional data and sparsity

@ 9. Cellwise outliers
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High dimensional data and sparsity: Outline

@ Classical PCA
@ Sparse PCA
© Robust PCA

@ Sparse robust PCA

© Robust sparse PCA
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Classica PCA
Principal Component Analysis

Principal Component Analysis
+ Models high-dimensional data

- Heavily influenced by outliers
- Difficult to interpret

December 67, 2016

Sparse PCA to

increase interpretability

p.

Robust PCA to
deal with outliers

RObust, Sparse PCA (ROSPCA)
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Classical PCA

PCA searches for uncorrelated linear combinations of the original variables
capturing most of the covariance structure of the original data.

For data X and loadings P (p’p; = 1),

max Var(Xp;) subject to Corr(pjz,pix) =0 Vi# j
P

Equivalently: the jth PCA loading is given by

argmax S(p'zq,...,p'x,) ifj=1
llpll=1

pj

argmax Swzy,...,.px,) ifl<j<p,
llpll=1,pLp1,...pLpj—1

with S the standard deviation.
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Sparse PCA - SCoTLASS

The goals of sparse PCA are:

o Fit PCA loadings with many elements set to zero to improve interpretability.

e Estimate a PCA model with sufficient explanatory power.

Jolliffe et al. (2003) proposed SCoTLASS:
The jth sparse PCA direction is given by

argmax S(p'zq,....p'x,) — M|plln ifj=1
5 lpl=1
p; =
argmax Sz, p'en) = Nlpln i1 <j<p,
lpll=1,pLpy,...pLD; 4

p.

with S the standard deviation. A higher value of A\ corresponds to greater sparsity,

and a value of zero corresponds to no sparsity.
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High dimensional data and sparsity [EEJEISN@N

The following example compares PCA and SCoTLASS on simulated data.
@ First two components explain most of the variability in the data.
@ Ten variables. True PC 1 loads on variables 1-4. True PC 2 loads on the
variables 5-8. Variables 9 and 10 are noise.

PCA SCoTLASS

1 2 1 2
1]-046 | 0.16 | 0.52 0
2|-048 | 0.14 | 0.34 0
3|-047 | 0.13 | 0.55 0

o| 4]-047 017 |055| 0
S| 51-013|-047 0 0.49
&| 6| -0.2 | -0.46 0 0.51
=1 7] 01 |-05]| 0 |049
8| -0.15 | -0.47 0 0.51
91]-017|-004 | O 0
10 | -0.05 | -0.08 0 0
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Robust PCA - ROBPCA

ROBPCA (Hubert-Rousseeuw-Vanden Branden, 2005) combines ideas of both
Projection Pursuit and robust covariance estimation in two main steps:

@ » Use PP to find a robust subspace of dimension k < p.

> Consider H; as the set of observations which are ‘close enough’ to this
subspace.

> Apply classical PCA to Hi, yielding loadings and k-dimensional scores.

@ Robustly estimate the scatter matrix of the scores using the MCD. The
eigenvectors and eigenvalues yield the robust loadings and eigenvectors.
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High dimensional data and sparsity [EAEETCRE

Fitting a model to the observations belonging to the majority of the data reveals
three kinds of outliers:

@ Orthogonal outliers: observations that are far away from the PCA model
space.

@ Good leverage points: observations that are far away on the PCA model
space.

© Bad leverage points: observations that are both far away from the model
space, and on it.

These types of outlyingness can be visualized in an outlier map.
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High dimensional data and sparsity [EEETCRE

Outlier map of ROBPCA applied to the glass data set

ROBPCA
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Sparse robust PCA

Croux et al. (2013) propose SRPCA. It integrates robustness and sparsity into the
projection pursuit equations.

@ The jth sparse robust PCA direction is defined as in SCoTLASS with S a
robust measure of scale, like the @,,.

@ A grid algorithm is used to find appropriate directions.

© The selection of A is based on a BlC-criterion.
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Robust sparse PCA

ROSPCA (Hubert et al. 2016) extends ROBPCA to obtain sparse loadings. Like
ROBPCA, ROSPCA takes two main steps:

@ » Use PP to find a robust subspace of dimension k < p.

> Consider H; as the set of observations which are ‘close enough’ to this
subspace.

> Apply SCoTLASS to Hi, yielding sparse loadings.

> Perform a reweighting to account for the sparse structure. Set the variables
with zero loadings aside and re-include observations that were only outlying on
those variables. This yields the set Hs.

> Apply SCoTLASS to Hs.
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Robust sparse PCA

2. » Robustly estimate the eigenvalues using the Q2 of the scores of the
observations in Ho.

> Robust center: the mean of the observations of Hs with a 'regular’ score
distance (Hs).

> Final eigenvalues: the sample variance of the (new) scores of the observations
with indices in H3 (the observations with low OD and high SD are not
included anymore).
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Selection of \

Minimize

1 In(hyp)
BICA) =In | — > 0D?,(A) | +df(\)——=
(A) hlp; (0 (A) (N) hip

where
@ hq is the size of H;

@ OD(;)(A) is the ith smallest orthogonal distance for the model when using A
as the sparsity parameter

@ df(\) the number of non-zero loadings

Minimize BIC within a grid [0, Ajaz] Where A4 gives full sparseness (exactly
one non-zero loading per PC).

Computation of the index set H; in ROSPCA does not depend on the choice of
the sparsity parameter!

Mia Hubert, Peter Rousseeuw, Stefan Van Aelst Session 8: High dimensional data and sparsity December 6-7, 2016 p. 14



High dimensional data and sparsity Robust sparse PCA

Computation time

ROSPCA )
s
§1—rn
87 S = e
Q — p=500
g | — p=to0
8
O e
3 4
8
B ;
E g s |
E = /
O —
.
o | . . .
T : ‘ ‘
100 200 500 -
| n

Computational performance of ROSPCA (left) and SRPCA (right) for varying
values of n and p (fixed A\). The ROSPCA plot displays both the sparse (dashed
line) and total (solid line) computation times.
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Simulations: Settings

To illustrate the performance of SCoTLASS, SRPCA and ROSPCA, we consider
the following simulation:

e n € {50,100,500}.
o k=2.

@ p=10: PC 1 loads on variables 1-4. PC 2 loads on variables 5-8. Variables 9
and 10 are noise.
p = 500: PC 1 loads on variables 1-20. PC 2 loads on variables 21-40. Other
variables are noise.

X =X, + Xnoise with X, ~ N,(0,X) and X ,,5i5e ~ N,(0,1,,).
The outliers ~ N, (tout, 201 ).
The proportion of outliers ¢ = 0,0.2,0.4.

®

®

(]
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nal data and sparsity [ESHUUIELINE

Simulations: Robustness

Angle (over 500 runs) between the true subspace and the estimated onefor
n = 100, p = 10. Left boxplot is based on the selected A using BIC, right boxplot
is the optimal A\ over a grid of A-values.
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Simulations: Robustness
Angle (over 100 runs) values n = 100, p = 500:
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Simulations: Sparsity

Zero measure: for each element of P, it is equal to 1 if the estimated and true
value are both zero or both non-zero, and 0 otherwise.

Total zero measure: the average zero measure over all elements of P and all
simulations.

1.0

Total zero measure
0.4
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Simulations: )\ selection

Quantile plot of angle values over 500 simulations at n = 100 and ¢ = 0.2 as a
function of A.
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Bamples
Example: glass data

EPXMA spectra of 180 collected glass samples.

0 100 200 300
Index
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Bxamples
Example: glass data

@ A sparse method is interesting since the data appears to have a sparse
structure.

@ Two known groups of outliers: observations with high calcium concentrations
(blue), and observations that were measured after the spectrometer was
cleaned (orange).

@ The selected k£ = 4.

@ The goal: achieve comparable outlier detection results while obtaining sparse
loadings that reflect the atomic structure of the glass samples.
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Examples
Glass data: outlier detection

Scaled outlier maps of ROSPCA (A = 0.96, 146s), SRPCA (A = 72.7, 419s) and
ROBPCA.
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Glass data: sparsity

Loadings of ROSPCA, SRPCA, and ROBPCA
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Glass data: sparsity
Number of non-zero loadings (larger than 10~°) for each method per PC. The

bottom row is the number of variables that have zero loadings (smaller than
107°) on all 4 PCs.

ROSPCA SRPCA ROBPCA
PC1 359 14 733
PC2 272 17 735
PC3 491 34 737
PC4 408 4 736
No. of excluded variables 200 696 13
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Travel data

Goal: to study travel behavior determinants based on a multiday travel survey
conducted in the region of Ghent, Belgium

Data: 717 individuals recorded all travel activities that were carried out over a
7-day course, observed in a period between September and December 2008.

Variables: number of peak-time journeys, number of work journeys, number of
education journeys, mean home-journey distance, mean shopping-journey
distance, number of journeys with children, number of journeys with baggage,...

Analysis: Plevka et al. 2016
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Bamples
Travel data: loadings

Loading
1005 00 05 10

Number of journeys with baggage ~
Number of journeys with purchased goods =
Number of journeys with children ~

Mean journey distance most frequent activity ~
Number of short distance trips —

Number of short duration trips =

T Mean leisuresjourney distance -
Mean shapping-journey distance =

Mean education-joumey distance ~

Mean work-journey distance ~

Mean home-journey distance =

Mean escort-journey distance ~

Leisure journeys ~

Shopping Journeys —

Education journeys -
Work journeys — - -
To home journeys - -

Escort journeys — | q 4

Night time journeys — - E
o
Peak time journeys ~ - 4 E<
Days without journey = - - s Y
c 5o pBED5E FRiDnGE
g €28 & ggeegegg &8aglree
(2) CPCA loadings (by ROBPCA loadings (c) ROSPCA loadings
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References
Want some more robustness?

Workshop to celebrate Peter Rousseeuw on the occasion of his 60th birthday.

May 31 - June 2, 2017

Leuven, Belgium

All information will become available at:

wis.kuleuven.be/stat/robust/PR60
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