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Outline of the course

1. General notions of robustness

2. Robustness for univariate data

3. Robust multivariate methods

4. Robust regression

5. Robust principal component analysis

6. Inference

7. Multivariate and functional depth

8. High dimensional data and sparsity

9. Cellwise outliers
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Multivariate and functional depth

Outline

1 Univariate data

2 Multivariate data

◮ Halfspace depth and bagdistance

◮ Projection depth and Stahel-Donoho outlyingness

◮ Skew-adjusted projection depth and adjusted outlyingness

3 Functional data

◮ Depth and distance

◮ Central tendency and variability of curves

◮ Detection of outlying curves

4 Surface and image data
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Multivariate and functional depth Univariate data

Depth

Univariate data can be ranked!

Depth generalizes rank to other types of data: multivariate observations,
regression data, functional data,...

Like rank, depth is a nonparametric notion, since the data are not
assumed to come from any distributional model.
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Multivariate and functional depth Univariate data

Depth function

General idea of a statistical depth function:

Depth function

Given p-variate data Xn = (x1, x2, . . . , xn) with xi ∈ R
p for all i = 1, . . . , n, a

depth function provides an ordering from the outside inward such that the least
central objects get the smallest depth values and most central objects get the
largest depth.

Some desired properties:

1 affine invariant

2 not too sensitive to outliers

3 computationally feasible.

See also the depth axioms in Zuo-Serfling (2000).
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Multivariate and functional depth Univariate data

Univariate data

We can rank univariate data Xn = {x1, . . . , xn} or equivalently compute the
empirical cdf. But the result depends on the orientation of the real line...
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Multivariate and functional depth Univariate data

Univariate data

We can rank univariate data Xn = {x1, . . . , xn} or equivalently compute the
empirical cdf. But the result depends on the orientation of the real line...
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Multivariate and functional depth Univariate data

Univariate data

We can rank univariate data Xn = {x1, . . . , xn} or equivalently compute the
empirical cdf. But the result depends on the orientation of the real line...

0

1 8

2 8

3 8

4 8

5 8

6 8

7 8

1

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8)

F̂ (x; Xn) = 1
n

#{xi 6 x} F̂ (−x; −Xn) = 1
n

#{xi > x}

HD(x; Xn) = 1
n

min(#{xi 6 x}, #{xi > x})

Mia Hubert, Peter Rousseeuw, Stefan Van Aelst Session 7: Multivariate and functional depth December 6–7, 2016 p. 8



Multivariate and functional depth Univariate data

Univariate data
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Multivariate and functional depth Univariate data

Univariate data

Formally, for any univariate data set Xn = {x1, . . . , xn} and any arbitrary point x
we define the depth of x with respect to Xn as:

HD(x; Xn) =
1

n
min

u∈{−1,1}
#{xi; uxi > ux}.

Note that x does not have to be an observation!

When n is odd, there is a unique point with largest depth.
When n is even, the largest depth is attained in an interval between two
observations.

In general, the depth median is defined as the average of all points with
largest depth.

In this setting, the depth median coincides with the usual sample median.
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Multivariate and functional depth Multivariate data

Halfspace depth

Tukey (1975) introduced the concept of halfspace depth to measure the
centrality of an arbitrary point within a multivariate data cloud.

Let x ∈ R
p be an arbitrary point and consider the data set Xn = (x1, x2, . . . , xn)

with xi ∈ R
p for all i = 1, . . . , n.

The halfspace depth of x with respect to Xn is defined as the smallest proportion
of data points contained in any closed halfspace of which the boundary passes
through x. More formally:

Halfspace depth

HD(x, Xn) =
1

n
min

‖u‖=1
#{xi; u

′
xi > u

′
x} .

Mia Hubert, Peter Rousseeuw, Stefan Van Aelst Session 7: Multivariate and functional depth December 6–7, 2016 p. 11

Multivariate and functional depth Multivariate data

Halfspace depth

Consider the following data set. To compute the halfspace depth of observation 2,
we consider all lines through that point and count the minimal number of
observations on each side of that line (including points on the line itself).
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Multivariate and functional depth Multivariate data

Halfspace depth

Around point 2, every halfplane will contain many observations:
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Multivariate and functional depth Multivariate data

Halfspace depth
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Multivariate and functional depth Multivariate data

Halfspace depth

When we look at the halfplanes with boundary line through observation 3, some
of them contain few observations:
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Multivariate and functional depth Multivariate data

Halfspace depth
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Multivariate and functional depth Multivariate data

Halfspace depth

As observation 3 lies on the convex hull of the data set, its halfspace depth
is equal to 1/n.
All points x outside the convex hull have zero halfspace depth.
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Multivariate and functional depth Multivariate data

Halfspace depth regions

Depth region

The depth region Dα of level α (with 0 < α < 1) is the set of points for which
HD(x, Xn) > α .

Halfspace depth regions are bounded convex sets, nested for increasing α.
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Multivariate and functional depth Multivariate data

Computation of halfspace depth

To compute the halfspace depth of a point x in R
p:

p = 2, 3: fast exact computation (Rousseeuw and Ruts 1996;
Rousseeuw and Struyf 1998), available in R-package mrfDepth.

p 6 4, 5: exact computation (Bremner et al. 2008, Liu and Zuo 2014,
Dyckerhoff and Mozharovskyi 2014)

approximate algorithms: Rousseeuw and Struyf (1998) and
Cuesta-Albertos and Nieto-Reyes (2008), available in R-package mrfDepth.
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Multivariate and functional depth Multivariate data

Computation of halfspace depth regions

To compute depth regions and their volumes:

p = 2: exact computation of the depth contour and its volume (Ruts and
Rousseeuw 1996), available in the R package mrfDepth.

p 6 5: exact computation using algorithms in Hallin-Paindaveine-Šiman
(2010) and Paindaveine-Šiman (2012).

approximately: intersections with the depth contours are searched on lines
originating from the depth median (bisection algorithm), see mrfDepth. Or
compute the volume of the convex hull of the data points with depth at least
α, using the convhulln function in the R-package geometry.
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Multivariate and functional depth Multivariate data

Tukey median: definition

The most central point (not necessarily an observation) is the point x with
the largest halfspace depth. Often, this point is not unique!

Tukey median

The Tukey median is defined as the average of the set of points with maximal
halfspace depth.

The Tukey median is affine equivariant, since halfspace depth is affine invariant.

Efficient algorithms were constructed to compute the Tukey median
(Rousseeuw-Ruts 1998; Miller et al. 2003).
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Multivariate and functional depth Multivariate data

Properties

If Xn is in general position, then

max
x

HD(x, Xn) 6

⌈
n
2

⌉

n
≈

1

2
.

At any data set Xn it holds that (Rado 1946):

max
x

HD(x, Xn) >

⌈
n

p+1

⌉

n
≈

1

p + 1
.

The breakdown value of the Tukey median can be as low as 1/(p + 1),
but converges to 1/3 if the regular data are sampled from a distribution
that is symmetric about some central point (Donoho-Gasko 1992).
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Multivariate and functional depth Multivariate data

The bagplot

Using halfspace depth we can generalize the well-known univariate boxplot to the
bivariate bagplot (Rousseeuw-Ruts-Tukey 1999):
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Multivariate and functional depth Multivariate data

The bagplot: construction

1 The central point [cross] is the Tukey median.
2 The bag [dark color] contains 50% of the points.
(It is interpolated between two depth contours.)

3 The fence [not drawn!] inflates the bag about the median by a factor of 3.
4 The loop [light color] is the convex hull of all the points inside the fence.
5 The points outside the fence are labeled as outliers [red stars].
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Multivariate and functional depth Multivariate data

The bagplot

The bagplot visualizes several characteristics of the data: its location,
spread (the size of the bag), correlation (the orientation of the bag),
skewness (the shape of the bag and the loop), and tails (the outliers).
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Multivariate and functional depth Multivariate data

The bagplot

The bagplot matrix shows several variables at once:
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Multivariate and functional depth Multivariate data

Bagdistance

Bagdistance (Hubert-Rousseeuw-Segaert 2015)

The bagdistance of x ∈ R
p to Xn is defined as

bd(x; Xn) =
‖x − θ‖

‖cx − θ‖

cx is intersection between
the depth contour
containing the 50% deepest
points (the bag) and the
line through x and θ

Note: outliers on the
bagplot have bagdistance
> 3. When p > 2, x can be
flagged as an outlier when

bd(x; Xn) >
√

χ2
p,0.99
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Multivariate and functional depth Multivariate data

Projection depth

Stahel-Donoho outlyingness

The Stahel-Donoho outlyingness of a point x relative to a data set Xn is given by

SDO(x; Xn) = sup
‖a‖=1

|a′
x −medj(a′

xj)|

MADj(a′xj)
.

The projection depth (Zuo and Serfling 2000, Zuo 2003) is based on the
Stahel-Donoho outlyingness:

Projection depth

The projection depth of a point x relative to a data set Xn is defined as

PD(x; Xn) =
1

1 + SDO(x, Xn)
.
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Multivariate and functional depth Multivariate data

Projection depth

Computation:

Take the directions orthogonal to hyperplanes spanned by random
subsamples of size p. This yields an affine equivariant algorithm (Maronna
and Yohai, 1995), available in the R-package mrfDepth.

Exact algorithms available for p = 2 (Zuo and Lai, 2011).

Approximate algorithms (Liu and Zuo, 2014)
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Multivariate and functional depth Multivariate data

Projection depth

Projection depth assigns non-zero values to points outside the convex hull of the
data. Hence PD (and SDO) is more appropriate for outlier detection than HD.
Also bagdistance gives more information about the degree of outlyingness than
HD.

Halfspace depth Projection depth
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Multivariate and functional depth Multivariate data

Skew-adjusted projection depth

The adjusted outlyingness of a point x relative to a dataset Xn is defined as
(Brys et al. 2005):

AO(x; Xn) = sup
‖a‖=1

AO(a′
x; Xna) .

The AO is useful for skewed data. Similar to SDO it leads to a depth measure:

Skew-adjusted projection depth

SPD(x; Xn) =
1

1 + AO(x; Xn)
.

+ Affine invariant

+ Robust

+ Allows for skewness
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Multivariate and functional depth Functional data

Univariate functional data

Example: an industrial machine produces one part per cycle. Each cycle is
monitored by an accelerometer. A cycle takes 120 ms, measurements are taken
every millisecond. The data contains n = 224 production cycles.
Several curves have a deviating pattern, most prominently at the final stage of
production:
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Multivariate and functional depth Functional data

Univariate functional data

Assume that these univariate curves

(Y1(t), t ∈ U), . . . , (Yn(t), t ∈ U)

are realizations of a real-valued stochastic process {Y (t), t ∈ U = [a, b]}
with distribution PY such that its paths are continuous functions from U to R.

Let us now take an arbitrary continuous function X : U → R.
How can we define the depth of X relative to the process Y ?

The integrated depth approach (Fraiman and Muniz 2001; Cuevas et al.
2007) starts from a depth function D for univariate data, so at each time point t
we can compute D(X(t); PY (t)). The integrated depth is then defined as

ID(X; PY ) =

∫

U

D(X(t); PY (t)) dt .
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Multivariate and functional depth Functional data

Univariate functional data

In the special case where D is the univariate simplicial depth (Liu 1990), the
integrated depth becomes the modified band depth MBD (López-Pintado and
Romo, 2009).

Other depth measures exist for univariate functional data, such as the random
projection depth of (Cuevas et al, 2007).

Note that in practice we don’t observe whole curves, but curve evaluations

{(Y1(tj), . . . , Yn(tj)); j = 1, . . . , T}

at a set of time points t1 < t2 < . . . < tT in U (not necessarily equidistant).
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Multivariate and functional depth Functional data

Multivariate functional data

Often curves are multivariate in nature!

Example: temperature and dewpoint temperature measured between January 11
and 15, 2013 at 78 weather stations in the U.K.
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Multivariate and functional depth Functional data

Multivariate functional data

On the other hand, starting from one set of curves one can also compute
additional curves such as:

the first and/or second order derivatives. This helps to detect curves with
outlying shape.

the integrated curves. When the data consists of acceleration
measurements, this helps us to study the velocity as well.

the warping functions that were used to warp the data. This helps us to
model phase variations.
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Multivariate and functional depth Functional data

Multivariate functional data

Example: acceleration and velocity (integrated!)
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Multivariate and functional depth Functional data

Basic questions of interest

1 estimation of the central tendency of the curves

2 estimation of the variability among the curves

3 classification or clustering of such curves

4 detection of outlying curves
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Multivariate and functional depth Functional data

Multivariate functional depth

Consider a p-variate stochastic process {Y (t), t ∈ U = [a, b]} with distribution PY

such that its paths are continuous functions from U to R
p.

Let D be a statistical depth function on R
p and w a weight function that is

defined on U and integrates to one.

Take an arbitrary continuous function X : U → R
p.

Multivariate functional depth (Claeskens et al. 2014)

The multivariate functional depth (MFD) of X is defined as

MFD(X; PY ) =

∫

U

D(X(t); PY (t)) w(t) dt .

When D is the halfspace depth this becomes the Multivariate Functional
Halfspace Depth (MFHD).
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Multivariate and functional depth Functional data

Weight functions

Examples of weight functions:

a constant

a constant times an indicator for a range of interest

proportional to the volume of the depth region at time point t

w(t) = wα(t; PY (t)) =
vol{Dα(PY (t))}∫

U
vol{Dα(PY (u))} du

a weight which is large in regions where all curves nearly coincide,
in order to penalize outlyingness in these time periods.

When MFHD uses the weight function wα the resulting depth is denoted by
MFHD(α).
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Multivariate and functional depth Functional data

MFHD median

Assume PY (t) has a unique deepest point for every t ∈ U .

MFHD median

The MFHD median of Y is defined as the curve Θ, in which for each t Θ(t) is the
vector in R

p with highest value of HD(·; PY (t)).

The MFHD median

does not depend on the weight function

is affine equivariant (unlike the coordinatewise median)

is in general not one of the observed curves.
(In the multivariate case it is not one of the data points either.)

is continuous under several conditions on the depth function and the
stochastic process

The median curve of the sample {Y1(tj), . . . , Yn(tj); j = 1, . . . , T} is defined
as the Tukey median at each time point.
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Multivariate and functional depth Functional data

Estimating the central tendency

The depth MFHD(α) with α = 1/8 yields the MFHD median (solid curve) which
is rather robust to the outlying curves.
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We can also consider the β-trimmed mean as the mean of the [nβ] curves with
largest depth. This estimator is somewhat more efficient in the gaussian case.
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Multivariate and functional depth Functional data

The central tendency and beyond

The rainbow plot (Hyndman and Shang, 2010) colors each curve according to
its depth.
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Multivariate and functional depth Functional data

Estimating the variability

To visualise the variability of the curves, one can plot the central regions
(López-Pintado and Romo, 2009), and derive dispersion curves from them.

The β-central region of each component consists of the band delimited by
the [nβ] curves with largest depth.

The β-dispersion curve sβ(t) of each component is defined as the width of
the β-central region at each t.

Typical choices for β: 0.25, 0.5, 0.75. Then for each component s0.5(t) can
be seen as a functional IQR (Sun and Genton, 2011).
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Multivariate and functional depth Functional data

Central regions
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Multivariate and functional depth Functional data

Dispersion curves
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Multivariate and functional depth Functional outlier detection

Detecting outlying curves

References: Hubert et al. 2015, Rousseeuw et al. 2016

Isolated outliers: outlying behavior during a short time interval.

Example: Proton Nuclear Magnetic Resonance spectra of 40 different wine
samples.
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Multivariate and functional depth Functional outlier detection

Shape and shift outliers

Shape outliers: shape differs from the majority without necessarily standing out at
any time point
Shift outliers: same shape as the majority, but moved away

Example: Near Infrared Spectroscopy responses for a batch of pills. Two groups:
90mg tablets (orange), 250mg (blue).
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Multivariate and functional depth Functional outlier detection

Depth for multivariate functional data

Outlying curves do not always have the lowest depth!

Octane data: 39 Near Infrared spectra of gasoline samples
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6 samples (25, 26 and 36-39) contain added ethanol, their MFHD ranks are :
16, 3, 12, 10, 5, 15
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Multivariate and functional depth Functional outlier detection

Depth heatmap

Depth heatmap

Vertically curves are ordered according to MFD (smallest depth on top).

Horizontally each entry is colored green according to the multivariate depth
at time t.

Octane data:
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Multivariate and functional depth Functional outlier detection

Distance for multivariate functional data

Functional bagdistance

fbd(X; P Y ) =

∫

[a,b]

bd(X(t); P Y (t)) · w̃(t, Y ) dt

Functional adjusted outlyingness

fAO(X; P Y ) =

∫

[a,b]

fAO(X(t); P Y (t)) · w̃(t, Y ) dt

w̃ can be different from w

Under minor conditions fbd and fAO are metrics on set of p-dimensional
continuous curves on [a, b].
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Multivariate and functional depth Functional outlier detection

Distance heatmap

Distance heatmap

Vertically curves are ordered according to fbd or fAO (largest distance on
top).

Horizontally each entry is colored red according to the multivariate distance
bd or AO at time t.

Octane data:

11
2

1
33

21
20

32
22

16
28

24
13

19
7

29
18

31
3

10
30

8
27

17
5

4
9

12
15

14
35

6
23

34
25

37
36

39
38

26

1100 1164 1228 1292 1356 1420 1484 1548

wavelength

0

20

40

60

bd

Mia Hubert, Peter Rousseeuw, Stefan Van Aelst Session 7: Multivariate and functional depth December 6–7, 2016 p. 52



Multivariate and functional depth Functional outlier detection

Distance heatmap

Wine data:
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Multivariate and functional depth Functional outlier detection

Functional outlier map

Functional outlier map (FOM)
(
fAO(Yi; Y ) ,

sdt(AO(Yi(t); Y (t)))

1 + fAO(Yi; Y )

)
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Shift outliers in the lower right part (since variability in the outlyingness is small),
shape outliers in the upper right part.
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Multivariate and functional depth Functional outlier detection

Flagging outliers

Define the combined functional outlyingness (CFO) of a curve Yi as

CFOi = CFO(Yi; Y ) =
√

(fAOi/med(fAO))2 + (vAOi/med(vAO))2

where fAOi = fAO(Yi; Y ). We flag a curve Yi as an outlier iff

LCFOi − med(LCFO)

MAD(LCFO)
> Φ−1(0.995)

where LCFOi = log(0.1 + CFOi).
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Multivariate and functional depth Functional outlier detection

Tablets data: FOM

Apply fAO and FOM to:

mean value of each spectrum (baseline)

baseline-corrected spectra

derivatives of the spectra
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Multivariate and functional depth Functional outlier detection

Results
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Multivariate and functional depth Functional outlier detection

Industrial data: FOM
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Multivariate and functional depth Surface and image data

Dorrit data

Excitation-emission (EEM) landscapes of 27 mixtures of four known fluorophores
with excitation wavelengths ranging from 230 nm to 315 nm every 5 nm, and
emission at wavelengths from 250 nm to 482 nm at 2 nm intervals.
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Multivariate and functional depth Surface and image data

General framework

Consider a real-valued stochastic process Y with distribution PY generating
observations:

Y i : [a, b] × [c, d] ⊂ R
2 → R

p : (u, v) Ô→ Yi(u, v) =




Y 1
i (u, v)

Y 2
i (u, v)

...

Y p
i (u, v)




In practice these surfaces are observed on a grid of points, so the i-th observation
is actually a p × J × K set

{Yi(j, k); j = 1, . . . , J, k = 1, . . . , K}

A functional data sample of size n is thus a four-dimensional array of size

n × p × J × K
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Multivariate and functional depth Surface and image data

Functional adjusted outlyingness

Let Y = {Y1, . . . , Yn} be a sample of p-variate surfaces recorded at grid points
{(j, k); j = 1, . . . , J and k = 1, . . . , K} with ∀i, j, k : Yi(j, k) ∈ R

p.

We obtain the adjusted outlyingness of a p-variate surface X with respect to Y by
integrating the multivariate adjusted outlyingness over the set of gridpoints.

Functional adjusted outlyingness

fAO(X; Y ) =

J∑

j=1

K∑

k=1

AO(X(j, k); Y (j, k)) Wjk

with
∑J

j=1

∑K

k=1 Wjk = 1.
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Multivariate and functional depth Surface and image data

Dorrit data

1 27 excitation-emission (EEM) landscapes of mixtures of four known
fluorophores

2 Yi contains 18 × 116 measurements Yi(j, k) for j = 1, . . . , J = 18 and
k = 1, . . . , K = 116.

3 Fit a PARAFAC model:
1 Trilinear model
2 Decomposition into the score matrix A and the loading matrices B and C,

plus an error term:

Yi(j, k) =

F∑

f=1

aif bjf ckf + eijk .

3 F = 4 corresponding with the 4 fluorophores present in the mixtures

4 Continue with the residuals of this model.
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Multivariate and functional depth Surface and image data

Dorrit data: FOMs
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Dorrit data: (left) FOM of original data; (right) FOM of residuals after PARAFAC
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Multivariate and functional depth Surface and image data

Dorrit data: heatmaps
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Dorrit data, observation 2: (left) AOmap on original data; (right) AOmap on
residuals after PARAFAC
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Multivariate and functional depth Surface and image data
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