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General references

Outline of the course

1. General notions of robustness

2. Robustness for univariate data

3. Robust multivariate methods

4. Robust regression

5. Robust principal component analysis

6. Inference

7. Multivariate and functional depth

8. High dimensional data and sparsity

9. Cellwise outliers
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General notions of robustness

Session 1: General notions of robustness

Outline:

1 Introduction: outliers and their effect on classical estimators

2 Measures of robustness: breakdown value, sensitivity curve,
influence function, gross-error sensitivity, maxbias curve.
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General notions of robustness Introduction

What is robust statistics?

Real data often contain outliers. Most classical methods are highly influenced
by these outliers.

Robust statistical methods try to fit the model imposed by the majority of the
data. They aim to find a ’robust’ fit, which is similar to the fit we would have
found without the outliers.

This allows for outlier detection: flag those observations deviating from the
robust fit.

What is an outlier? How much is the majority?
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Assumptions

We assume that the majority of the observations satisfy a parametric

model and we want to estimate the parameters of this model.

E.g. xi ∼ N(µ, σ2)
xi ∼ Np(µ,Σ)
yi = β0 + β1xi + εi with εi ∼ N(0, σ2)

Moreover, we assume that some of the observations might not satisfy this
model.

We do NOT model the outlier generating process.

We do NOT know the proportion of outliers in advance.
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General notions of robustness Introduction

Example

The classical methods for estimating the parameters of the model may be
affected by outliers.

Example. Location-scale model: xi ∼ N(µ, σ2) for i = 1, . . . , n.

Data: Xn = {x1, . . . , x10} are the natural logarithms of the annual incomes
(in US dollars) of 10 people.

9.52 9.68 10.16 9.96 10.08

9.99 10.47 9.91 9.92 15.21
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Example

The income of person 10 is much larger than the other values.
Normality cannot be rejected for the remaining (’regular’) observations:
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General notions of robustness Introduction

Classical versus robust estimators

Location:

Classical estimator: arithmetic mean

µ̂ = x̄n =
1

n

n
∑

i=1

xi

Robust estimator: sample median

µ̂ = med(Xn) =















x(n+1

2
) if n is odd

1
2

(

x(n

2
) + x(n

2
+1)

)

if n is even

with x(1) 6 x(2) 6 . . . 6 x(n) the ordered observations.
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Classical versus robust estimators

Scale:

Classical estimator: sample standard deviation

σ̂ = Stdevn =

√

√

√

√

1

n− 1

n
∑

i=1

(xi − x̄n)2

Robust estimator: interquartile range

σ̂ = IQRN(Xn) =
1

2Φ−1(0.75)
(x(n−[n/4]+1) − x([n/4]))
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General notions of robustness Introduction

Classical versus robust estimators

For the data of the example we obtain:

the 9 regular observations all 10 observations

x̄n 9.97 10.49

med 9.96 9.98

Stdevn 0.27 1.68

IQRN 0.13 0.17

1 The classical estimators are highly influenced by the outlier

2 The robust estimators are less influenced by the outlier

3 The robust estimate computed from all observations is comparable with
the classical estimate applied to the non-outlying data.

Mia Hubert, Peter Rousseeuw, Stefan Van Aelst Session 1: General notions of robustness December 6–7, 2016 p. 11

General notions of robustness Introduction

Classical versus robust estimators

Robustness: being less influenced by outliers

Efficiency: being precise at uncontaminated data

Robust estimators aim to combine high robustness with high efficiency
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General notions of robustness Introduction

Outlier detection

The usual standardized values (z-scores, standardized residuals) are:

ri =
xi − x̄n

Stdevn

Classical rule: if |ri| > 3, then observation xi is flagged as an outlier.

Here: |r10| = 2.8 → ?

Outlier detection based on robust estimates:

ri =
xi −med(Xn)

IQRN(Xn)

Here: |r10| = 31.0 → very pronounced outlier!

MASKING is when actual outliers are not detected.

SWAMPING is when regular observations are flagged as outliers.

Mia Hubert, Peter Rousseeuw, Stefan Van Aelst Session 1: General notions of robustness December 6–7, 2016 p. 13

General notions of robustness Introduction

Remark

In this example the classical and the robust fits are quite different, and from
the robust residuals we see that one of the observations deviates strongly
from the others. For the remaining 9 observations a normal model seems
appropriate.

It could also be argued that the normal model may not be appropriate itself,
and that all 10 observations could have been generated from a single
long-tailed or skewed distribution.

We could try to decide which of the two models is more appropriate if we had
a much bigger sample. Then we could fit a long-tailed distribution and apply
a goodness-of-fit test of that model, and compare it with the goodness-of-fit
of the normal model on the non-outlying data.
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General notions of robustness Introduction

What is an outlier?

An outlier is an observation that deviates from the fit suggested by the majority
of the observations.
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How much is the majority?

Some estimators (e.g. the median) already work reasonably well when 50% or
more of the observations are uncontaminated. They thus allow for almost 50%
of outliers.

Other estimators (e.g. the IQRN) require that at least 75% of the observations
are uncontaminated. They thus allow for almost 25% of outliers.

This can be measured in general.
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General notions of robustness Measures of robustness

Measures of robustness: Breakdown value

Breakdown value (breakdown point) of a location estimator

A data set with n observations is given. If the estimator stays in a fixed
bounded set even if we replace any m− 1 of the observations by any outliers,
and this is no longer true for replacing any m observations by outliers,
then we say that:

the breakdown value of the estimator at that data set is m/n

Notation:
ε∗n(Tn, Xn) = m/n

Typically the breakdown value does not depend much on the data set.
Often it is a fixed constant as long as the original data set satisfies some weak
condition, such as the absence of ties.
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Breakdown value

Example: Xn = {x1, . . . , xn} univariate data, Tn(Xn) = med(Xn).

Assume n odd, then Tn = x((n+1)/2).

Replace n−1
2 observations by any value, yielding a set X∗

n

⇒ Tn(X
∗

n) always belongs to [x(1), x(n)], hence Tn(X
∗

n) is bounded.

Replace n+1
2 observations by +∞, then Tn(X

∗

n) = +∞.

More precisely, if we replace n+1
2 observations by x(n) + a,

where a is any positive real number, then Tn(X
∗

n) = x(n) + a.
Since we can choose a arbitrarily large, Tn(X

∗

n) cannot be bounded.

For n odd or even, the (finite-sample) breakdown value ε∗n of Tn is

ε∗n(Tn, Xn) =
1

n

[

n+ 1

2

]

≈ 50% .

Note that for n→∞ the finite-sample breakdown value tends to ε∗ = 50%
(which we call the asymptotic breakdown value).
For instance, the arithmetic mean satisfies ε∗n(Tn, Xn) =

1
n → ε∗ = 0% .
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General notions of robustness Measures of robustness

Breakdown value

A location estimator µ̂ is called location equivariant and scale equivariant iff

µ̂(aXn + b) = aµ̂(Xn) + b

for all samples Xn and all a 6= 0 and b ∈ R.

A scale estimator σ̂ is called location invariant and scale equivariant iff

σ̂(aXn + b) = |a|σ̂(Xn) .

For equivariant location estimators the breakdown value can be at most 50%:

ǫ∗n(µ̂, Xn) 6
1

n

[

n+ 1

2

]

≈ 50% .

Intuitively: with more than 50% of outliers, the estimator cannot distinguish
between the outliers and the regular observations.

Mia Hubert, Peter Rousseeuw, Stefan Van Aelst Session 1: General notions of robustness December 6–7, 2016 p. 19

General notions of robustness Measures of robustness

Sensitivity curve

The sensitivity curve measures the effect of a single outlier on the estimator.

Assume we have n− 1 fixed observations Xn−1 = {x1, x2, . . . , xn−1}.
Now let us see what happens if we add an additional observation equal to x,
where x can be any real number.

Sensitivity curve

SC(x, Tn, Xn−1) =
Tn(x1, . . . , xn−1, x)− Tn−1(x1, . . . , xn−1)

1/n

Example: for the arithmetic mean Tn = X̄n we find SC(x, Tn, Xn−1) = x− x̄n−1.

Note that the sensitivity curve depends strongly on the data set Xn−1 .
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Sensitivity curve: example

Annual income data: let X9 consist of the 9 ‘regular’ observations.
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Influence function

The influence function is the asymptotic version of the sensitivity curve.
It is computed for an estimator T at a certain distribution F ,
and does not depend on a specific data set.

For this purpose, the estimator should be written as a function of a
distribution F . For example, T (F ) = EF [X] is the functional version of
the sample mean, and T (F ) = F−1(0.5) is the functional version of the
sample median.

The influence function measures how T (F ) changes when contamination
is added in x. The contaminated distribution is written as

Fε,x = (1− ε)F + ε∆x

for ε > 0, where ∆x is the distribution that puts all its mass in x.
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Influence function

Influence function

IF(x, T, F ) = lim
ε→0

T (Fε,x)− T (F )

ε
=

∂

∂ε
T (Fε,x) |ε=0

Example: for the arithmetic mean T (F ) = EF [X] at a distribution F with
finite first moment:

IF(x, T, F ) =
∂

∂ε
E[(1− ε)F + ε∆x] |ε=0

=
∂

∂ε
[εx+ (1− ε)T (F )] |ε=0 = x− T (F )

At the standard normal distribution F = Φ we find IF(x, T,Φ) = x .

We prefer estimators that have a bounded influence function.
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Gross-error sensitivity

Gross-error sensitivity

γ∗(T, F ) = sup
x
|IF(x, T, F )|

We prefer estimators with a fairly small sensitivity (not just finite).

Asymptotic variance

For asymptotically normal estimators, the asymptotic variance is given by

V (T, F ) =

∫

IF(x, T, F )2dF (x)

under some regularity conditions.

We would like estimators with a small γ∗(T, F ) but at the same time a small
V (T, F ), i.e., a high statistical efficiency.
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Maxbias curve

The influence function measures the effect of a single outlier, whereas the
breakdown value says how many outliers are needed to completely destroy the
estimator. These tools thus reflect opposite extremes.

We would also like to know what happens in between, i.e. when there is more
than one outlier but not enough to break down the estimator. For any fraction ε
of outliers, we consider the maximal bias that can be attained.

Maxbias curve

maxbias(ε, T, F ) = sup
G∈Nε

|T (G)− T (F )|

with the ‘neighborhood’ Nε = {(1− ε)F + εH; H is any distribution} .

The maxbias curve is useful to compare estimators with the same breakdown
value. For the median at the standard normal distribution we obtain
maxbias(ε,med,Φ) = Φ−1(1/(2− 2ε)) which is plotted on the next slide.
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Maxbias curve

This graph combines the maxbias curve, the gross-error sensitivity and the
breakdown value.
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