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Outline of the course

@ 1. General notions of robustness

@ 2. Robustness for univariate data

@ 3. Robust multivariate methods

@ 4. Robust regression

@ 5. Robust principal component analysis
@ 6. Inference

@ 7. Multivariate and functional depth

@ 8. High dimensional data and sparsity

@ 9. Cellwise outliers
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Multivariate location and scatter: Outline

Classical estimators and outlier detection
M-estimators

The Stahel-Donoho estimator

The MCD estimator

The MVE estimator

S-estimators

MM-estimators

Some non affine equivariant estimators
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Software availability
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Classical estimators and outlier detection
Multivariate location and scatter

Data: @1,...,x, where the observations x; are p-variate column vectors.

We often combine the coordinates of the observations in an n X p matrix:

T11  Ti12 Tip
X = (x4, amn)/ =
Tnl  Tno Tnp
Model for the observations:
z; ~ Np(p,X)

More generally we can assume that the data were generated from an elliptical
distribution, whose density contours are ellipses too.
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Outlier detection

In the multivariate setting, outliers cannot always be detected by simply
applying outlier detection rules to each variable separately:

Bivariate Outliers
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Outlier detection

These points are not outlying in either variable:
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We can only detect such outliers by correctly estimating the covariance structure!
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Affine equivariance

We usually want estimators [+ and 3 that are affine equivariant.

Affine equivariance
p({Az, +0b,..., Az, + b}) = Ap({x1,...,z,})+ b
S({Ax; +b,..., Az, +b}) = AS({x1,..., 2, }) A

for any nonsingular matrix A and any vector b.

Affine equivariance implies that the estimator transforms well under any
non-singular reparametrization of the space of the x;.

Consequently, the data might be rotated, translated or rescaled (for example
through a change of measurement units) without affecting the outlier
detection diagnostics.
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Affine equivariance

A counterexample to affine equivariance is the coordinatewise median

n n
a{ze,...,x,}) = (';ﬂf{j Tit, ..., med Tip)

which is very easy to compute.

It is not affine equivariant, and not even orthogonally equivariant since it does
not transform well under rotations.

What we can do is shift the data like {1 + b, ..., @, + b} and rescale by
a diagonal matrix A (that is, change the measurement units of the original
variables).

We will study the robustness of the coordinatewise median later.
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Classcal estimators and outlier detection
Breakdown value

We say that a multivariate location estimator fi breaks down when it can be
carried outside any bounded set.
Every affine equivariant location estimator satisfies

1 {n+1
>kA)('rL gf
i < 5 | "5 |

The breakdown value of a scatter estimator 3 is defined as the minimum
of the explosion breakdown value and the implosion breakdown value.

Explosion occurs when the largest eigenvalue becomes arbitrarily large.
Implosion occurs when the smallest eigenvalue becomes arbitrarily small.
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(ITEIELETCNIEEINIEL IR Classical estimators and outlier detection

Breakdown value

Any affine equivariant scatter estimator 3 satisfies

A 1 — 1
B X < 5 | PR

if the sample X, is in general position:

General position

A multivariate data set of dimension p is said to be in general position if
at most p observations lie in a (p — 1)-dimensional hyperplane.

For example, at most 2 observations lie on a line, at most 3 on a plane, etc.
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(ITEIELETCNIEEINIEL IR Classical estimators and outlier detection

Overview

Estimators of multivariate location and scatter can be divided into those that are

affine equivariant or not, and those with low or high breakdown value:

affine equivariant non affine equivariant

Low BV || Classical mean, covariance
M-estimators

Convex peeling

Tukey median

Simplicial median

Oja median
High BV || Stahel-Donoho estimator coordinatewise median
MCD, MVE spatial median, sign covariance
S-estimators OGK
MM-estimators DetMCD
Session 3: Robust multivariate methods December 6-7, 2016

Classical estimators

affine equivariant non affine equivariant

Low BV || Classical mean, covariance
M-estimators

Convex peeling

Tukey median

Simplicial median

Oja median
High BV || Stahel-Donoho estimator coordinatewise median
MCD, MVE spatial median, sign covariance
S-estimators OGK
MM-estimators DetMCD
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Classcal estimators and outlier detection
Classical estimators

The classical estimators for g and ¥ are the empirical mean and covariance
matrix:

n
_ 1
33:75 Z;
n-
=1

Both are affine equivariant but highly sensitive to outliers, as they have:

@ zero breakdown value

@ unbounded influence function.
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Classcal estimators and outlier detection
Classical estimators

Consider the Animals data set containing the logarithm of the body and brain
weight of 28 animals:
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Classclesimators and outier dtection
Tolerance ellipsoid

On this plot we can add the 97.5% tolerance ellipsoid. Its boundary contains
those @x-values with constant Mahalanobis distance to the mean.

Mahalanobis distance

MD(@) = /(@ — 2.)'Si (@ — @)

Classical tolerance ellipsoid

{z; MD(z) < /X3 0.075}

with x2 o 975 the 97.5% quantile of the x*-distribution with p degrees of freedom.
We expect (for large n) that about 97.5% of the observations belong to
this ellipsoid.

We could flag observation x; as an outlier if it does not belong to the
classical tolerance ellipsoid, but...
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Classclestimators and outier dtecion
Tolerance ellipsoid

Based on the classical mean and covariance matrix, the outliers do not stand out:

Classical tolerance ellipse
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Classical estimators and outlie detection
Point estimates

On all data points:

Tog = (3.77 4.425)

14.22  7.05

Sag =
7.05

5.76

This yields an estimated correlation of r = 7.05/1/14.22 % 5.76 = 0.78.
On the reduced data set (without observations 6, 16 and 26):

Tos = (3.03 4.428)'

10.50 7.90

Sas =
7.90

6.45

which yields an estimated correlation of r = 0.96 !
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M-estimators of location and scatter

affine equivariant non affine equivariant

Low BV || Classical mean, covariance
M-estimators
Convex peeling
Tukey median
Simplicial median
Oja median

High BV || Stahel-Donoho estimator coordinatewise median
MCD, MVE spatial median, sign covariance
S-estimators OGK
MM-estimators DetMCD
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Multivariate location and scatter [IVEESETIEIIE

M-estimators of location and scatter

At the normal model, the MLE estimators of p and ¥ are given by:

n n

1 .
(@i —fr) =0 together with — (x; — fu)(x; — o) =%
2 (x; — [v) ogether wi 02 (z; — ) (x; — [2)

M-estimators of location and scatter

An M-estimator (fi, ) is defined as the solution of

S Wi (@) (@i — ) = 0 (1)
=il

> W) s — )i — i) =5 2)

where d; = \/(ar:z — f1)’S~1(2; — f1) depends on the f and 3 themselves.
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Multivariate location and scatter [EIVEESETIEIIE

M-estimators of location and scatter

@ There are conditions on Wy and W5 that ensure the existence, uniqueness
and consistency of the estimators. Important conditions are that v/t W (t)
and tWa(t) are bounded. An M-estimator for which tW(t) is weakly
increasing is called monotone, otherwise it is called redescending.

@ M-estimators can be computed with an iterative algorithm.
@ Start with initial choices fi, and 33, e.g. the coordinatewise median and the
diagonal matrix with the squared coordinatewise MAD at the diagonal.

@ At iteration k we compute dy; = \/(ml — 1) S (@i — fuy,) and

i _ 2?21 Wi (diz)mz
e ?:1 Wl(dii) '

. 1 — . .
X1 = D Waldii) (@i — fur) (@i — )
i=1

For a monotone M-estimator this algorithm always converges to the unique
solution, no matter the choice of the initial values. For a redescending
M-estimator the algorithm can converge to a bad solution.

Mia Hubert, Peter Rousseeuw, Stefan Van Aelst Session 3: Robust multivariate methods December 6-7, 2016 p. 20




Efficiency and robustness of M-estimators

Properties of M-estimators:

@ Under some regularity conditions on W; and W5, M-estimators are
asymptotically normal.

o The influence function is bounded if v/tWy(t) and tWx(t) are bounded.

@ The asymptotic breakdown value of a monotone M-estimator satisfies
e L
~ p + 1 .
Although monotone M-estimators attain the optimal value of 0.5 in
the univariate case, this is no longer true in higher dimensions!

A monotone M-estimator is thus computationally attractive, but at the cost of

a rather low breakdown value.

Redescending M-estimators can have a larger breakdown value, but the algorithm

may converge to a wrong solution.
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(ITEIELETCNIEINIER IRl The Stahel-Donoho estimator

Affine equivariant estimators with high breakdown value

affine equivariant non affine equivariant

Low BV || Classical mean, covariance
M-estimators

Convex peeling

Tukey median

Simplicial median

Oja median

High BV || Stahel-Donoho estimator coordinatewise median

MCD, MVE spatial median, sign covariance
S-estimators OGK
MM-estimators DetMCD
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The Stahel-Donoho estimator

The Stahel-Donoho estimator was the first affine equivariant estimator of
location and scatter with 50% breakdown value (Stahel, 1981; Donoho, 1982).

It is based on the projection pursuit principle: a multivariate outlier should
be outlying in at least one direction, but not necessarily the directions of the
coordinate axes.

@ Data are projected on a direction a.

@ For each data point x; its absolute residual is computed, where the residual
is defined as the robustly standardized distance of its projection a’x; to the
median of the projected observations.

© For each data point, the largest absolute residual over all directions a is
retained. This is called the outlyingness of x;.

@ The Stahel-Donoho estimate of location and scatter is a weighted mean and
covariance matrix, where the weight function W (¢) is a strictly positive and
weakly decreasing function of the outlyingnesses of the ;.
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The Stahel-Donoho estimator: definition

Stahel-Donoho estimator
The Stahel-Donoho outlyingness of a point «; is given by

la’x; — med;(a’x;)|

SDO; = sup

. 3
a€ERP MAD]'(CLISCJ') ( )

A typical weight function is

22
W (t) = min (1, p’0'95>

12

The Stahel-Donoho estimator is then defined as the weighted mean and
covariance matrix of the x; with weights w; = W(SDO;).
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The tahetDoncho estimator
The Stahel-Donoho estimator: example

Consider the following two-dimensional dataset, with 50 observations and two

outliers:

Mia Hubert, Peter Rousseeuw, Stefan Van Aelst

The tahetDoncho estimator
The Stahel-Donoho estimator: example

.
L)
o
° .
. .
. .
)
%
d \":.....
0o’ b
.
. o o
.
o o
.
. ) . . .
-3 -2 -1 0 1

Session 3: Robust multivariate methods

Consider the observation marked in red:
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The tahetDoncho estimator
The Stahel-Donoho estimator: example

In every direction it has a small outlyingness:

-3t

-4 L
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The tahetDoncho estimator
The Stahel-Donoho estimator: example
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Now consider one of the outlying observations:
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The StahekDonoh esimato
The Stahel-Donoho estimator: example

In at least one direction it has a large outlyingness:
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The tahetDoncho estimator
The Stahel-Donoho estimator: properties

o If tW(t) and t2W (t) are bounded, then the breakdown value of the
SD-estimator is 50%.

@ In (3) also other estimators of univariate location and scale can be used,
such as M-estimators of location and scale.

@ The IF is bounded when using M-estimators of location and scale with
bounded and monotone % and p functions.

@ To compute the Stahel-Donoho estimator, the number of directions a needs
to be restricted to a finite set. These can be obtained by subsampling: take
the directions orthogonal to hyperplanes spanned by random subsamples of
size p. This yields an affine equivariant algorithm.

@ For many outliers or in high dimensions it can happen that fewer than p 4 1
observations receive a weight w; > 0, leading to a singular 3. We can then
replace the w; by 0-1 weights that are set to 1 for the [n + p + 1]/2 points
with lowest outlyingness. We call this the MSDE estimator.
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The MCD estimator
The MCD estimator

The MCD estimator (Rousseeuw, 1984) is an often used high-breakdown
and affine equivariant estimator of location and scatter:

Minimum Covariance Determinant estimator
For fixed h, with [n +p+1]/2 < h < n,

@ [i, is the mean of the h observations for which the determinant of the
sample covariance matrix is minimal;

@ 3 is that covariance matrix (multiplied by a consistency factor).

The MCD estimator can only be computed when i > p, otherwise the covariance
matrix of any h-subset will be singular. This condition is certainly satisfied when
n = 2p. It is however recommended that n > 5p.
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Robustness of the MCD

@ The influence function is bounded.

@ The value of h determines the breakdown value.

At samples in general position,

X . (n—h—i—l h—p)
€ =min [ ———

)

n n

The maximal breakdown value is achieved by taking h = [n + p + 1]/2.

Typical choices are « = h/n = 0.5 or a = 0.75, yielding a breakdown value
of 50% and 25% respectively.
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Efficiency of the MCD

The MCD is asymptotically normal, but it has a low efficiency. The efficiency
increases with increasing a.

For example, with « = 0.5, the asymptotic relative efficiency of the diagonal
elements of the MCD scatter matrix with respect to the sample covariance
matrix, at the normal model, is only 6% when p = 2, and 20.5% when p = 10.

With a = 0.75 the relative efficiencies are 26.2% for p = 2 and 45.9%
for p = 10.

The efficiency of the MCD can be increased by applying a reweighting step:

First, compute the robust distances

RD; = \/(371 - ﬂo)'io_l(mi — f1p)
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The MCD simator
Reweighted MCD

Then put

1 if RD; < ’/Xz27,0-975

w; =

0 otherwise.

Reweighted MCD (RMCD)

it . Z:‘L:1 W;d;
RMCD = ~=n
2
1 n
YRMCD = S~ 7 sz‘(mi — fraep) (@i — Bryep)
Z¢=1 (R

@ The reweighting step does not decrease the breakdown value.

@ It increases the efficiency: when o = 0.5 the efficiency goes up to 45.5%
for p = 2 and 82% for p = 10.
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The MCD simator
Reweighted MCD: example

Example: RMCD with a = 0.5 yields:

> library(rrcov)
> resultMCD=CovMcd(x = log(Animals))

Robust Estimate of Location:
body brain
3.029 4.276

Robust Estimate of Covariance:
body  brain

body 18.86 14.16

brain 14.16 11.03

> covMCD=getCov (resultMCD)
> cov2cor (covMCD)

body brain
body 1.0000000 0.9816633
brain 0.9816633 1.0000000
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The MCD simator
Reweighted MCD: example

We can also use the function covMcd from the robustbase library:

> library(robustbase)
> resultMCD=covMcd (x=log(Animals))

Robust Estimate of Location:
body brain
3.029 4.276

Robust Estimate of Covariance:
body brain

body 18.86 14.16

brain 14.16 11.03

> resultMCD$cor

body brain
body 1.0000000 0.9816633
brain 0.9816633 1.0000000
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Outlier detection

For outlier detection, recompute the robust distances (this time based
on the reweighted MCD):

~ SN—1 ~
RD; = \/(wi — Bryvep) ¥ ruen(®i — Braep)
Flag observation z; as an outlier if RD; > /X2 ; o75-

This is equivalent to flagging the observations that do not belong to the robust
tolerance ellipsoid:

Robust tolerance ellipsoid

{z;RD(z) < X§,0‘975}
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Outlier detection

Outlier detection based on RMCD correctly flags the outliers in the animals data:

Classical and robust tolerance ellipse
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The MCD estimater
Distance-distance plot

In dimensions p > 2, we cannot draw a scatterplot or a tolerance ellipsoid.

To explore the differences between a classical and a robust analysis we can
draw a distance-distance plot, which plots the points (MD;, RD;)

Distance-Distance Plot
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The univariate MCD estimator

In the special case of univariate data (p = 1) the MCD becomes:

@ /1o is the mean of the h observations for which the classical standard
deviation is minimal;

@ 05y is that standard deviation (multiplied by a consistency factor).

Note that the optimal h-subset has to be contiguous, i.e. it must consist
of successive ordered observations.

So, in order to compute the univariate MCD we only have to loop over
n — h + 1 contiguous subsets. If we use an update formula for the variance
the time complexity is only O(n log(n)).

However, as an estimator for univariate location and scale the MCD is
outperformed by other methods (in terms of robustness and efficiency).
Therefore the MCD is mainly useful for higher-dimensional data.
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Computation of the MCD

Exact algorithm:
o Consider all h-subsets.
@ Compute the mean and covariance matrix of each.
@ Retain the subset with smallest covariance determinant.

But: infeasible for large n or p...

Approximate algorithms:

o Consider a selected set of h-subsets, starting from random subsets of size
p—+ 1. The most often used algorithm is FAST-MCD (Rousseeuw and
Van Driessen, 1999).

@ A faster, but not fully affine equivariant alternative is DetMCD (Hubert
et al., 2012). We will describe this later.
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Multivariate location and scatter [EEIERVICDRIEISTS

Computation of the raw estimates for small to moderate data sizes n < 600:

@ For m =1 to 500:

> Draw a random subset of size p + 1 and compute its mean and
covariance matrix.
> Apply a C-step:
@ Compute robust distances RD; based on the most recent mean and
covariance estimate.
@ Take the h observations with smallest robust distance.
© Compute mean and covariance matrix of this h-subset.

> Apply a second C-step.
@ Retain the 10 h-subsets with smallest covariance determinant.
© Apply C-steps on these subsets until convergence.

@ Retain the A-subset with smallest covariance determinant.
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(W ITEIEETENIEEINIEL IR The MCD estimator

o C-steps always decrease the determinant of the covariance matrix!

@ As there are only a finite number of h-subsets, convergence to a (local)
minimum is guaranteed.

@ The algorithm is not guaranteed to yield the global minimum. The fixed
number of initial (p + 1)-subsets (500) is a compromise between robustness
and computation time.

@ At larger data sets (n > 600), the algorithm randomly splits the data set in
disjoint subsets. First, C-steps are applied within the subsets, and next
in the full data set.
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The MCD etimator
FAST-MCD: Philips example

Data from Philips Mecoma about the production of thin metal plates, with
n = 677 and p = 9 characteristics, for statistical process control. The classical
Mahalanobis distances (and their chi-squared QQ-plot) indicate a few outliers:
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The MCD etimatr
FAST-MCD: Philips example

The robust distances from FAST-MCD give a different picture:

©eq .
° .
3 .
< .
I
22 .
av . .
2 R
" - "..‘ e
J-"»\’ '--ut}
o
0 200 400 600

Index

The process changed after the first 100 points, and between index 491-565 it was
out of control.
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The MCD etimator
FAST-MCD: Philips example

Also the distance-distance plot highlights the out-of-control period:
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(W ITEIEETENIEEINIEL IR The MCD estimator

FAST-MCD:

The Digital Palomar Sky Survey (DPOSS) contains data about celestial objects
(light sources). After removing physically impossible data, we have n = 132402

Digital sky survey

objects with p = 6 variables. The classical Mahalanobis distances (and their

chi-squared QQ-p

lot) look homogeneous:
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Multivariate location and scatter [EEIERVICDRIEISTS

FAST-MCD:

Digital sky survey

December 6-7, 2016

The robust distances from FAST-MCD give a different picture:
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FAST-MCD: Digital sky survey

The distance-distance plot makes a clear distinction between stars and galaxies:
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Software for MCD

Implementations of the FAST-MCD algorithm are widely available:

@ R: as the function CovMcd in the package rrcov, and as the function
covMcd in the package robustbase

@ S-PLUS: as the built-in function cov.mcd

@ Matlab: as the function mcdcov in the toolbox LIBRA
(wis.kuleuven.be/stat/robust), and the PLS toolbox of Eigenvector
Research (www.eigenvector.com)

@ in SAS/IML Version 7+, and in PROC ROBUSTREG in SAS Version 9+

o STATA, see
http://ideas.repec.org/a/tsj/stataj/v10y2010i2p259-266.html

Note that some functions use « = 0.5 as default, yielding a breakdown value
of 50%, whereas other implementations use the default o = 0.75.
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The MVE estimator
The MVE estimator

The MVE (Rousseeuw, 1985) is one of the oldest robust covariance estimators
that is affine equivariant and has a positive breakdown value.

Minimum Volume Ellipsoid
For fixed h, with [n+p+1]/2 < h < n,

(j, %) = argmin |3
©,x

over all real g and symmetric positive definite X that satisfy

(s ds = (@i — BYE (s — 1) < 2} > R).

The estimator is thus defined by the ellipsoid with minimal volume which
contains (at least) h observations.

Its breakdown value is optimal (50%) when h = [(n + p + 1)/2], but the MVE
lacks asymptotic normality.
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Multivariate location and scatter [EREEEEIEII

S-estimators of location and scatter

Remember the definition of an M-estimator ), of univariate scale:

1n xX;
PWEIE

oM
S-estimator of location and scatter
(f2, %) = argmin |3
©,x

over all real p and symmetric positive definite 3 that satisfy

with d; = \/(alcZ — 1)Y=V (; — fu) and p a smooth bounded p-function
(Rousseeuw and Leroy, 1987).
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Efficiency of S-estimators

@ To obtain (Fisher-)consistency at normal distributions, we set ¢ to

§ = En, 0,0 (p([X]]))

@ S-estimators are asymptotically normal. Their efficiency at the gaussian
model is somewhat better than the efficiency of the RMCD, especially
in higher dimensions.

For example, the diagonal element of the bisquare S scatter matrix with
50% breakdown value has an asymptotic relative efficiency of 50.2% for
p =2, and 92% for p = 10. (RMCD: 45.5% for p = 2 and 82% for p = 10).

@ S-estimators are smoothed versions of the MVE, which corresponds to a
function p that only takes on the values 0 and 1.
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Robustness of S-estimators

@ The breakdown value of both the location and scatter estimator is:

if the data are in general position.

The tuning parameter in p. thus determines the robustness, as well as the
efficiency.

@ To obtain a bounded influence function, it is required that ¢'(z) and
(x)/x are bounded and continuous. The influence function of S-estimators
can then be seen as a smoothed version of the MCD's influence function.

@ To compute an S-estimator, the FAST-S algorithm can be used
(Salibian-Barrera and Yohai, 2006). It is similar to FAST-MCD.
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Multivariate location and scatter [EREESEIIEI

S-estimators: example

> resultS=CovSest(log(Animals))
Call:

CovSest(x = log(Animals))

-> Method: S estimation: S-FAST

Robust Estimate of Location:
[11] 3.271 4.345

Robust Estimate of Covariance:
body  brain

body 22.72 17.24

brain 17.24 13.36

> covS=getCov(resultS)
> cov2cor(covS)
body brain
body 1.0000000 0.9898186
brain 0.9898186 1.0000000
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Multivariate location and scatter [EREEEEIEII

S-estimators: example

> plot(resultS,which="tolEllipse",classic=TRUE)

Classical and robust tolerance ellipse

w0 ]
©
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©
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>
KS)
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o |
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-10 -5 0 5 10 15

log(body)
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Mb-stimtors
MM-estimators of location and scatter

MM-estimators combine high robustness with high efficiency (Tatsuoka and
Tyler, 2000).

They are based on two rho functions py and p;. The first rho function is chosen
to obtain a high breakdown value. The second rho function is chosen to achieve
a high efficiency.

To construct an MM-estimator, note that a scatter matrix can be separated into
a scale estimate and a shape matrix:

Put T := |Z|~'/P% | then

T|=1 and X=|3|V/7T.

We call |$|'/?P the scale estimate, and T' the shape matrix.
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Mb-estimtors
MM-estimators of location and scatter

MM-estimator of location and scatter
@ Let (f1,%) be an S-estimator with rho function py. Denote 62 = |L|1/7.

@ The MM-estimator for location and shape (f,I") minimizes

% im <\/(‘Bz — u)/{tl(xi - H)) (4)
i=1

a

among all real p and symmetric positive definite T with |T'| = 1.

The MM-estimator for the covariance matrix is then 3 = 2T
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Mb-stimtors
MM-estimators of location and scatter

@ The location and shape estimates inherit the breakdown value of the
auxiliary scale. Thus one typically chooses an S-estimator with 50%
breakdown value.

For a bisquare pg, ¢ = 1.547 yields a 50% breakdown value.

@ The influence functions (and thus asymptotic variance) of MM-estimators
for location and scatter equal those of M-estimators of location and scatter
that use the function p;.

For bisquare p1, ¢ = 4.685 yields 95% efficiency (at the normal model).

@ The FAST-MM algorithm starts with FAST-S and then applies
IRLS steps to minimize (4).
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-stimtors
MM-estimators: example

> resultMM=CovMMest (log(Animals))
Call:

CovMMest (x = log(Animals))

-> Method: MM-estimates

Robust Estimate of Location:
[1] 3.086 4.427

Robust Estimate of Covariance:
body brain

body 12.036 9.021

brain 9.021 7.272

> covMM=getCov (resultMM)
> cov2cor (covMM)
body brain
body 1.0000000 0.9642449
brain 0.9642449 1.0000000
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-stimtors
MM-estimators: example

Mia Hubert, Peter Rousseeuw, Stefan Van Aelst
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Some non affine equivariant estimators

affine equivariant non affine equivariant

Low BV || Classical mean, covariance
M-estimators
Convex peeling
Tukey median
Simplicial median
Oja median

High BV || Stahel-Donoho estimator coordinatewise median
MCD, MVE spatial median, sign covariance
S-estimators OGK
MM-estimators DetMCD
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Some non affine equivariant estimators
The coordinatewise median

Coordinatewise median:

n n n ;
o= (medz;;, medzio, ..., medwz;y) .
=1 =1 o=l

@ Easy to compute and to interpret

®

50% breakdown value!

®

not affine equivariant, and not even orthogonally equivariant

®

[t does not have to lie in the convex hull of the sample when p > 3.
As an example, consider the set {(1,0,0)’,(0,1,0)’,(0,0,1)'} whose
convex hull does not contain the coordinatewise median (0,0,0)’.
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Some non afin cquvariant stmaters
The spatial median

Spatial median

The L' location estimator, also known as the spatial median, is defined as

n
o = argmin > |z — pal.
Boi=

This is equivalent to

i — &l

ZH 0 (5)

@ 50% breakdown value, bounded influence function
@ not affine equivariant, but orthogonal equivariant

e Computation: Equation (5) corresponds to equation (1) of M-estimators,
with Wy (t) = 1/v/t. We can thus use the iterative algorithm with ¥ = I.
Other algorithms are discussed in Fritz et al. (2012).
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The spatial median
Geometric interpretation: take a point o in RP and project all observations onto

a sphere around p. If the mean of these projections equals p, then p is the
spatial median.

When projecting all data points on a sphere around the star, the mean of these
projections (depicted as crosses) does not equal the center of the sphere. For the

triangle, it does. By definition, the triangle equals the spatial median. Note the
moderate influence of observation 11.
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(UITIVELEVNIIEITIEL LRSIl Some non affine equivariant estimators

The sign covariance matrix

The sign covariance matrix (SCM) is the classical covariance matrix computed on
the projected data points (Visuri et al., 2000).

Sign covariance estimator

b LoD
n—1 |lo; — ol [lo; —

with fi the spatial median.

@ 50% breakdown value, bounded influence function

@ not affine equivariant, but orthogonally equivariant.
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Some non affine equivariant estimators
The orthogonalized Gnanadesikan-Kettenring estimator

@ Introduced by Maronna and Zamar (2002)
@ Fast to compute, also in high dimensions

@ Not affine or orthogonal equivariant, only scale equivariant

It is inspired by the fact that the classical variance o and the classical
covariance o, between two variables Y and Y}, satisfy:

(0(Y; +Y2)? = oY) — Yi)?)

1
o — —
jk 4
Gnanadesikan and Kettenring (1972) had proposed to compute a robust
covariance measure between 2 variables by replacing the o's on the right

hand side by a robust scale estimator. However, the resulting scatter matrix
need not be PSD.
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Some non affine equivariant estimators
The OGK estimator: definition

OGK = orthogonalized Gnanadesikan-Kettenring estimator:

@ Let m(.) and s(.) be robust univariate estimators of location and scale.
@ Construct y, = D7 'x; for i =1,...,n with D = diag(s(X1),...,s(X})).

@ Compute the ‘correlation matrix' U of the variables of Y = (Y7,...,Y},),
given by u;, = 1(s(Y; 4+ Yi)? — s(Y; — Y;)?). This matrix is symmetric
but not necessarily PSD.

@ Put the eigenvectors of U as columns in a matrix £ and

@ project the data on these eigenvectors, i.e. V =Y E;

® compute ‘robust variances’ of V = (V1,...,V}), i.e.
A = diag(s*(V1), ..., 5% (V}));

© Set the p x 1 vector fi(Y) = Em where m = (m(V1),...,m(V}))
and compute the positive definite matrix 3(Y') = EAE'.

© Transform back to X, i.e. i(X) = Di(Y) and & = DE(Y)D'.
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Some non affine equivariant estimators
The OGK estimator: properties

@ Step 4 of the method (the ‘orthogonalization’) uses the fact that the
eigenvalues of the covariance matrix are equal to the variances of the data
projected on the eigenvectors. Here the eigenvalues are estimated via a
robust (univariate) scale estimator. As these estimates are positive, the
new scatter matrix FAE’ is positive definite.

@ When high-breakdown estimators are chosen for m and s, then the
breakdown value of the OGK estimator is 50%.

@ Also a reweighting step can be added, which increases the efficiency.
The proposed cutoff for the robust distances is

Y2
c= %M med(dy,...,d,)

Xp,0.5

with d; the robust distances from the raw OGK estimates.
The reweighted estimators are ‘approximately’ affine equivariant.
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Some nonaffnecquarion etimtors
The DetMCD algorithm

Deterministic algorithm for MCD (Hubert et al., 2012).

Overall idea:

@ Compute several 'promising’ h-subsets, based on

> transformations of variables
> easy-to-compute robust estimators of location and scatter.

@ Apply C-steps until convergence.
This yields a fast algorithm which is at least as robust as FAST-MCD,
but not fully affine equivariant.

Preprocessing: standardize X by subtracting the columnwise median
and dividing by the columnwise @,, scale estimator.
@ Makes the estimates location and scale equivariant.

e Standardized data: Z with rows 2 and columns Z;.
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The DetMCD algorithm

e Construct six initial estimates fi,,(Z) and 3 (Z) for center and scatter:

>

>

>

Obtain six preliminary estimates S for covariance/correlation matrix of Z.
Compute eigenvectors E of S and put B = ZFE.

Estimate covariance of Z by 3.(Z) = ELE’ with
L = diag (Qn(Bl)Q, ce Qn(Bp)Q).

Estimate the center: f1,(Z) = i],lc/z(med(Zfl,zl/Q)).

@ For each initial estimate do:

Compute statistical distances di, = d(zi, j1,,(Z), Sk (Z)).
Initial ho-subset: ho = [n/2] observations with smallest d;y.

Compute the statistical distances d};, based on these h( observations. Select
the h observations with smallest d;,, and apply C-steps until convergence.

@ Retain the h-subset with smallest covariance determinant.
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Some non affine equivariant estimators
DetMCD: Preliminary estimates

© Take hyperbolic tangent (a sigmoid) of the standardized data:

Y; = tanh(Z;) Vi=1,...,p.

Take Pearson correlation matrix of Y

Sy = corr(Y).

@ Consider the Spearman correlation matrix:

Sy = corr(R)

where RR; is the rank of Z;.

© Compute normal scores T} from the ranks R;:

! n—!—%

where ®(.) is the standard normal cdf, and put S5 = corr(T).
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Some non affine equivariant estimators
DetMCD: Preliminary estimates

@ Related to sign covariance matrix:
Define k; = Hzil\ and let

1 n
Sio= — > kik;
i=1
(Here the coordinatewise median is used instead of the spatial median

to estimate the center.)

@ First step of the BACON algorithm (Billor et al., 2000):
Consider the [n/2] standardized observations z; with smallest norm,
and compute their mean and covariance matrix.

@ The raw OGK estimator of location and scatter.
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DetMCD: Properties

@ Faster than FAST-MCD and equally robust in moderate dimensions
(say, p < 10)

@ Faster than FAST-MCD and more robust in higher dimensions,
especially when there is much contamination

@ Deterministic: does not depend on any random selection
@ Permutation invariant
@ Nearly affine equivariant

@ Initial estimates do not yet depend on the value h which determines the
breakdown value.
This makes it easy to compute DetMCD for several h-values, and to see
whether at some h there is a substantial change in the objective function
or the estimates.
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When to use DetMCD

When should we use FAST-MCD and when DetMCD? Recommendation:
@ When p < 10 run FAST-MCD.

@ When p is larger than this it becomes harder or even infeasible to draw
enough initial subsets, and then it is better to run DetMCD.

DetMCD is useful as a building block for multivariate analysis (multivariate
regression, exponential smoothing, calibration, ...)
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Robust Covariance Estimation: R

@ FAST-MCD: the function CovlMcd in the package rrcov, and the function
covMcd in the package robustbase.

@ MVE, FAST-S: the package rrcov contains implementations of the MVE
(CovMve) and S-estimators (CovSest), as well as several other robust

estimators of location and scatter (MM-estimators, Stahel-Donoho, OGK).

@ DetMCD: use the function covMcd in the package robustbase with
optional argument nsamp = "deterministic" .

@ Bagplot: function bagplot in R package aplpack.
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Software
Robust Covariance Estimation: Matlab

@ FAST-MCD: the function mcdcov in the toolbox LIBRA
(wis.kuleuven.be/stat/robust), and the PLS toolbox of Eigenvector
Research (www.eigenvector.com). Default: v = 0.75, yielding a
breakdown value of 25%.

@ FAST-S: the function fastsloc.m from Christophe Croux's webpage
(www.econ.kuleuven.be/public/NDBAEO6/programs/)

@ MM: the function MMrse.m from Christophe Croux’s webpage, and
the function multimm.m (containing multiS as auxiliary function) from
Stefan Van Aelst's webpage.

@ Also the FSDA toolbox, available at www.riani.it/MATLAB.htm,
contains implementations of S and MM-estimators.

@ DetMCD: available in LIBRA. It has OGK as a subroutine.

@ Bagplot: available in LIBRA.
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