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Outline of the course

@ 1. General notions of robustness

@ 2. Robustness for univariate data

@ 3. Robust multivariate methods

@ 4. Robust regression

@ 5. Robust principal component analysis
@ 6. Inference

@ 7. Multivariate and functional depth

@ 8. High dimensional data and sparsity

@ 9. Cellwise outliers
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Robustness for univariate data

Robustness for univariate data: Outline

@ Location only:

> explicit location estimators
> Me-estimators of location

@ Scale only:

» explicit scale estimators
> M-estimators of scale

© Location and scale combined

@ Measures of skewness
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The pure location model

Assume that 1, ..., x, are independent and identically distributed (i.i.d.) as

[Fu(a) = Fa—w)]

where —oo < p < 400 is the unknown location parameter and F' is a continuous
distribution with density f, hence f,(z) = F,(z) = f(x — ).

Often f is assumed to be symmetric. A typical example is the standard normal
(gaussian) distribution ® with density ¢.

We say that a location estimator T is Fisher-consistent at this model iff

‘T(FM) =p  forall p.

Note that F), is only a model for the uncontaminated data. We do not model
outliers.
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Some explicit location estimators

@ Median

@ Trimmed mean: ignore the m smallest and the m largest observations
and just take the average of the observations in between:

1 n—m

W 2 O

i=m-+1

frar =
with m = [(n — 1)a] and 0 < a < 0.5.
For o = 0 this is the mean, and for a — 0.5 this becomes the median.

© Winsorized mean: replace the m smallest observations by x(,, 1)
and the m largest observations by x(,_,,). Then take the average:

1 n—m
fwnr = = | T (m+1) + E T (i) + ML (n—m)
i=m-+1
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Robustness properties

Breakdown value: ¢ (med) — 0.5; & (fira) = €k (fiwnr) = (m+1)/n — «.

Maxbias: For any ¢, the median achieves the smallest maxbias among all
location equivariant estimators.
Influence function at the normal model:

—— Classical mean

~ Median

o~ — = Trimmed mean, alpha=0.25
Winsorized mean, alpha=0.25
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|
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Robustness for univariate data [IRIEII

Implicit location estimators

The location model says that F),(x) = F/(x — p) with unknown p.

The maximum likelihood estimator (MLE) therefore satisfies
finLg = argmax [ [ £ — )
b=t

= argmaxz log f(xz; — w)
Bei=t

= argmin Z —log f(x; — p)
b=t

For f = ¢ (standard normal), this yields fip| g = Zn-

For f(z) = 1e~I®l (Laplace distribution), this yields fipj g = med(X,,).
For most f the MLE has no explicit formula.
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M-estimators of location

Let p(x) be an even function, weakly increasing in |z|, with p(0) = 0.

M-estimator of location

fing = argmin » _ p(a; — 1)
Ho =1

If p is differentiable with 1) = p’, then /iy, satisfies:

n

> (@i = fir) =0 (1)

i=1

If ¢ is discontinuous, we take fip; as the o where > 7" | p(x; — p) changes sign.

Note that the MLE is an M-estimator, with p(z) = —log f(z) and
() = p'(x) = = f'(x)/ f(x). For F' =&, {(z) = —=¢'(x)/¢(x) = x.
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Some often used p functions

e Mean: p(z) = 22%/2

e Median: p(x) = |z
e Huber:
z?/2 if |z] <b
py(x) =
blz| —v?/2 if |z|>b
@ Tukey’s bisquare:
2 4 .
S —am taa if |2z[<c
pe(x) = , (2)
5 if |z|>c
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Some often used p functions

rho function of various estimators

o _| .
~ e Classical mean
=== Median
Huber, b=1.345
e Tukey, c=4.68
(oo}
(o —
~
X
N
(=8
< -
N —
o —
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Score functions

e Mean: Y(z) ==
e Median: ¢(x) = sign(z)

@ Huber:
x if || <b
bsign(z) if |z| >0

@ Tukey’s bisquare:
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Score functions

The corresponding score functions ¢ = p':

psi function of various estimators

N —| «== Classical mean
=== Median
Huber, b=1.345
e Tukey, c=4.68
- - —
~
X o 44— —
>
- =
I
~ /
I
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Properties of location M-estimators

o Fisher-consistent iff [ (z)dF(z) = 0.

@ Influence function:

B ()
R ) = T tare)

The influence function of an M-estimator is proportional to its 1)-function.
A bounded -function thus leads to a bounded IF.

@ Asymptotically normal with asymptotic variance

V*(x)dF (x)
V(T,F :/IF z, T, F)*dF (x :f—
= IR B = gy art) 2
@ By the information inequality, the asymptotic variance satisfies

V(T,F) > ﬁ

where I(F) = [(—f'(z)/f(x))?dF(z) is the Fisher information of the model.
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Properties of location M-estimators

@ The asymptotic efficiency of an estimator 7" at the model distribution F’

is defined as 1

V (T, F)I(F)

so by the information inequality it lies between 0 and 1.

eff =

@ The Fisher information of the normal location model is 1, so the asymptotic
efficiency is eff = 1/V (T, F'). For different choices of the tuning constants we
obtain the following efficiencies:

Huber: b = 1.345 gives eff = 95%
b= 1.5 gives eff = 96.5%
b — 0 (median) gives eff = 64%

Bisquare: ¢ = 4.68 gives eff = 95%
c = 3.14 gives eff = 80%
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Properties of location M-estimators

®

Breakdown value: 50% if v is bounded.
Note that it does not depend on the tuning parameter (b or c).

®

Maxbias curve: does grow with the tuning parameter.

@ The Huber M-estimator has a monotone v-function, hence:

> unique solution for (1)
> large outliers still affect the estimate, but the effect remains bounded.

(]

The bisquare M-estimator has a redescending -function, hence:

> no unique solution for (1)
> the effect of large outliers on the estimate reduces to zero.
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Location
Remarks

@ The trimmed mean and the Huber M-estimator have the same IF,
and thus the same asymptotic efficiency, when

F~1(1-a)
1 -2«

b=

For instance, for & = 0.25 we obtain b = 1.349 and eff = 95%.

But the Huber M-estimator has a 50% breakdown value, whereas the
25%-trimmed mean only has a 25% breakdown value.

@ M-estimators of location are NOT scale equivariant. We will see later
that we can make them scale equivariant by incorporating a scale
estimate as well.
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scale
The pure scale model

The scale model assumes that the data are i.i.d. according to:

where o > 0 is the unknown scale parameter. As before F' is a continuous
distribution with density f, but now

T

fola) = F() = - £(2).

We say that a scale estimator S is Fisher-consistent at this model iff

S(F,)=0 forallo>0.
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Scale
Robustness measures of scale estimators

@ The influence function is defined as for any other estimator.

@ The breakdown value of a scale estimator is defined as the minimum of
the explosion breakdown value and the implosion breakdown value.

Explosion is when the scale estimate is inflated (6 — o0).
The classical standard deviation can explode due to a single far outlier.

Implosion is when the scale estimate becomes arbitrarily small (6 — 0),
which would be a problem because scale estimates often occur in the
denominator of a statistic (such as the z-score).

For equivariant scale estimators the breakdown value is at most 50%:

(0, Xn) < = {g] ~ 50% .

@ Analogously, we can compute two maxbias curves: one for implosion, and
one for explosion.
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Robustness for univariate data [ESIEIES

Explicit scale estimators

Some explicit scale estimators:
© Standard deviation (Stdev) Not robust.
@ Interquartile range
IQR(X5) = Z(n—[n/41+1) = Z(fn/4))
However, at F,, = N(0,02) it holds that IQR(F,) = 2®1(0.75)0 # 0.

Normalized IQR:

IQRN(X,,) = IQR(X,,) .

1
26-1(0.75)

The constant 1/2®71(0.75) = 0.7413 is a consistency factor.

When using software, it should be checked whether the consistency factor
is included or not!
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Robustness for univariate data [EIEIES

Explicit scale estimators

Estimators with 50% breakdown value:

© Median absolute deviation
MAD(X,,) = med(|z; — med(X,,)|)

At any symmetric sample it holds that IQR = 2 MAD.

At the normal model we use the normalized version:

MADN(X,,) = MAD(X,,) = 1.4826 MAD(X,,)
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Seae
Explicit scale estimators

Two estimators which do not depend on an initial location estimate
(Rousseeuw and Croux, 1993):

@ Q) estimator
Qn = 2.219{|z; — 25137 < j})

with k= (3) ~ (3)/4 and h = [2] + 1.
Despite appearances, ), can be computed in O(nlogn) time.

@ S, estimator
Sp = 1.1926 med med{|z; — z;|}
i

For each i we compute the median of {|z; — z;[;j =1,...,n}.
The median of these n numbers is then the estimate S,,.

Also S,, can be computed in O(nlogn) time.
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Explicit scale estimators

Influence Function of various scale estimators

StDev
MAD/IQR
Sn

W

Qn

I 7| —— Bisquare
T T T T T
4 -2 0 2 4

X
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Robustness for univariate data [ESIEIES

Explicit scale estimators

Robustness and efficiency at the normal model:

e* ¥* eff

Stdev | 0% 00 100%
IQRN 25% | 1.167 | 37%
MADN | 50% | 1.167 | 37%

Sh 50% | 1.625 | 58%

Qn 50% | 2.069 | 82%

Note that IQRN and MADN have the same influence function, but that the
breakdown value of MADN is twice as high as that of IQRN. We thus prefer
MADN over IQRN.
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Robustness for univariate data [EIEIES

MLE estimator of scale

The maximum likelihood estimator (MLE) of o satisfies

. Tl
OMLE = argmaxH ;f(;)
7 =1

= argmax » {— log(o) + log f(%)}

7 =1
Zeroing the derivative with respect to o yields:

[se)-
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MLE estimator of scale

We can rewrite this last expression as

1 — ;
=3 () =1
n “ (o2

=1

if we put

f't)

O

If f=¢, then p(t) =¢* and 6prE = /Y., x7/n (the root mean square).
If f=%e~Iel (Laplace), then p(t) = |t| and Gre = iy |zil/n -

p(t) = —t

For most other densities f there is no explicit formula for 6y;15.

We can now generalize the formula above to a function p that was not
obtained from the density of a model distribution.
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M-estimators of scale

Let p(x) be an even function, weakly increasing in |z|, with p(0) = 0.

M-estimator of scale

The constant § is usually taken as

5= / p(t)dF(¢)

to obtain Fisher-consistency at the model F,, .
The breakdown value of an M-estimator of scale is
1) )
* (A . * * .
e (Gp) =min (e, ,,€; =—mn|{——,1— ——
( M) ( expl> zmpl) (p(OO)7 p(OO)
so it is 0% for unbounded p and 50% for a bounded p with § = p(c0)/2 .
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I Y .
Properties of M-estimators of scale

@ At the model distribution F' we have ¢ = 1 by Fisher-consistency, and

o plx) =6
Fe ) = T are)

The influence function of an M-estimator is proportional to p(xz) — ¢ .
A bounded p-function thus leads to a bounded IF.

@ Asymptotically normal with asymptotic variance
V(T,F) = /lF(x,ia F)2dF(z)

@ By the information inequality, the asymptotic variance satisfies

1
V(T,F) > —
P> 75
where I(F) = [(—1— 1}25?)%1?(@ is the Fisher information of the scale
model. For ' = ® we find I(F) = 2 and IF(x; MLE, ®) = (2% — 1)/2 .
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Scale
From standard deviation to MAD

POBACTHO(Tb
B CTATUCTUKE

Mogxop Ha ocHoBe
PYHKLMA BANSHUA

WaparenscTso «Mup»
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Robustness for univariate data [ESIEIES

Bisquare M-estimator of scale

A popular choice for p is the bisquare function (2).
The maximal breakdown value of 50% is achieved at ¢ = 1.547.

rho function for Tukey’s bisquare

2 o — o=1547
c=2.5
o
=
a
©
o
o
o
T T T T T T T
3 2 -1 0 1 2 3
X
MialHuberBlpeter] RolsseeTwliSteraniVanIACIEE
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Model with both location and scale unknown

The general location-scale model assumes that the z; are i.i.d. according to

o

Fluo () =F (ﬂ)

where —oo < i1 < 400 is the location parameter and o > 0 is the scale

parameter. In this general model, both p and o are assumed to be unknown
which is realistic. The density is now

(2

f(u,o)(x) = F(/u,a)(x) = %f <x _M> :

In this general situation we can still estimate location and scale by means of the
explicit estimators we saw for the pure location model (Median, trimmed mean,
and winsorized mean) and the pure scale model (IQRN, MADN, S,,, and @,,).
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Model with both location and scale unknown

Note that the location M-estimators we saw before, given by

n

fiag = argmin » _ pla; — 1)
=1
are not scale equivariant. But we can define a scale equivariant version by

n
[y = argmin Zp (%; u)

moi=1

where & is a robust scale estimate that we compute beforehand. The robustness

of the end result depends on how robust & is, so it is best to use a scale
estimator with high breakdown value such as MADN.

For instance, a location M-estimator with monotone and bounded -function
(say, the Huber v with b = 1.5) and with 6=MADN attains a 50%
breakdown value, which is the highest possible.
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An algorithm for location M-estimators

Based on ¢ = p’ we define the weight function
Y(x)/z if x#0

W0 if x=0.

W(zx) =

p.

weight functions for Huber weight functions for Tukey’s bisquare

_| == Huber, b=1345
Huber, b=2.5

J \

I I I I I I I I I I I I I I
6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6
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_| = Tukey.c=25
Tukey, ¢ = 4.68

v
X
|
e
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CIEHECRTQTOIVEREILNCEIE  Location-scale

An algorithm for location M-estimators

Using this function W (x) = ¢ (z)/x, the estimating equation

Z?:l W (%) = 0 can be rewritten as

n

Z i — fim W(xi—ﬂM> _0
; o o)
i=1
or equivalently
D iy Wills

ing =
: Z?:l Wi

with weights w; = W ((a; — fiar)/), so we can see the location M-estimator fips
as a weighted mean of the observations.

But this is still an implicit equation, as the w; depend on fi,; itself.
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Robustness for univariate data [EEERIEIITEEEI

An algorithm for location M-estimators

Iterative algorithm:

@ Start with an initial estimate, typically fip = med(X,,)

@ Fork=0,1,2,..., set
wkz:W<w>
G

n
N _ D i1 Wk, iTi
He+1 = n
D i Wi

and then compute

© Stop when g1 — fik| < ed .

Since each step is a weighted mean, which is a special case of weighted least
squares, this algorithm is called iteratively reweighted least squares (IRLS).

For monotone M-estimators, this algorithm is guaranteed to converge to the
(unique) solution of the estimating equation.
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Algorithms for M-estimators

Remarks:

@ IRLS is not the only algorithm for computing M-estimators. One can also
use Newton-Raphson steps. Taking a single Newton-Raphson step starting
from med(X,,) yields an estimator by itself, which has good properties.

@ Similar algorithms also exist for M-estimators of scale.

@ An alternative approach to M-estimation in the location-scale model
would be to consider a system of two estimating equations:

n

£
e

—p

>—O and

e

=1

Ty — W -5
g

and to search for a pair (fi, ) that solves both equations simultaneously.
However, this yields less robust estimates.
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Example

December 6-7, 2016 p. 35

Applying all these location estimators to the annual income data set yields:

regular obs. | all obs.

T, 9.97 10.49

med 9.96 9.98

trimmed mean, o = 0.25 9.97 10.00
Winsorized mean, oo = 0.25 9.98 10.01
Huber, b =1.5 9.97 10.00
Bisquare, ¢ = 4.68 9.96 9.96
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CIEHECRTQTOIVEREILNCEIE  Location-scale

Applying the scale estimators to these data:

regular obs. | all obs.
Stdev 0.27 1.68
IQRN 0.13 0.17
MADN 0.18 0.22
Qn 0.31 0.37
Sh 0.23 0.29
Huber, b =1.5 0.17 0.19
Bisquare, ¢ = 4.68 0.23 0.29
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Skewness
Robust measures of skewness

We know that the third moment is not robust. The quartile skewness measure

is defined as
(Q3z — Q2) — (Q2 — Q1)
Q3 — Q1
where 1, Q2 = med(X,,), and Q3 are the quartiles of the data. This skewness

measure has a 25% breakdown value but is not very 'efficient’ in that deviations
from symmetry may not be detected well.

Medcouple (MC) (Brys et al., 2004)

MC(Xn) = med ({h(l‘l,l‘j), T; < QQ < Ij})

with
(z; — Q2) — (Q2 — ;)

xj—:vi

h($i,$j) =

This measure also has ¢* = 25% and is more sensitive to asymmetry .
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Standard boxplot

The boxplot is a tool of exploratory data analysis. It flags as outliers all points
outside the ‘fence’
(@1 — 151QR, Qs + 1.5 IQR]

Example: Length of stay in hospital (in days):

Standard boxplot
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This outlier detection rule is not very accurate at asymmetric data.
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Adjusted boxplot
For right-skewed distributions, the fence is now defined as

[Q1— 1.5 e *MCIQR, Q3 + 1.5 €2 MC IQR]
(Hubert and Vandervieren, 2008).
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Standard boxplot  Adjusted boxplot
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s
Software

In the freeware package R:

® e © o o

® © o o

Mean, Median: mean, median
trimmed mean: mean(x,trim=0.25)
Winsorized mean: winsor.mean(x,trim=0.25) in package psych

Huber's M: huberM in package robustbase, hubers in package MASS,
rlm in package MASS (rlm(data 1,psi=psi.huber,scale.est="MAD"))

Tukey Bisquare: rlm in package MASS
(rim(data 1,psi=psi.bisquare,scale.est="MAD"))

MADN, IQR: mad and IQR

®@n,Sn: Qn and Sn in package robustbase
Medcouple: mc in package robustbase

adjusted boxplot: adjbox in package robustbase
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