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Outline of the course

1. General notions of robustness

2. Robustness for univariate data

3. Robust multivariate methods

4. Robust regression

5. Robust principal component analysis

6. Inference

7. Multivariate and functional depth

8. High dimensional data and sparsity

9. Cellwise outliers
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Principal component analysis

Principal component analysis: Outline

1 Classical PCA

2 Outlier detection in PCA

3 Robust PCA based on a robust covariance estimator

4 Robust PCA based on projection pursuit

5 Spherical robust PCA

6 ROBPCA, based on projection pursuit and the MCD

7 Robust PCA for skewed data
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Principal component analysis Classical PCA

Classical PCA

Consider a dataset Xn,p = {x1, . . . ,xn} with xi ∈ R
p

We assume that the variables are continuous.

Sometimes p is very large: p ≫ 500 and/or p > n.

The main objective of PCA is to reduce the dimension of the data set
without losing too much information.

One looks for a k-dimensional subspace of Rp (with k ≪ min(n, p))
such that the projection of the data on this subspace contains most of
the information of the original p-dimensional data.

We thus search for a center µ̂ and a loading matrix Pp,k (of size p× k)
such that the k-dimensional scores ti

ti = (P ′)k,p(xi − µ̂)

are the most informative.
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Principal component analysis Classical PCA

Classical PCA

Classical PCA (CPCA) seeks the directions of maximum variability of the data.

In particular, it computes the loading matrix

Pp,k = [p1,p2, . . . ,pk]

where the first column is chosen as

p1 = argmax
||p||=1

var{p′(x1 − x̄),p′(x2 − x̄), . . . ,p′(xn − x̄)}

and all the following columns are chosen sequentially by

pj+1 = argmax
||p||=1,p⊥p

1
,...,p⊥pj

var{p′(x1 − x̄),p′(x2 − x̄), . . . ,p′(xn − x̄)} .
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Principal component analysis Classical PCA

Classical PCA

The solution of this maximization problem yields the loading matrix as
the matrix containing the k dominant eigenvectors of the covariance
matrix Sn of the data points.
In particular, the spectral decomposition of Sn yields

Sn = PLP ′

with P the p× p orthogonal matrix containing all p eigenvectors of Sn

and L the diagonal matrix with the p eigenvalues l1, . . . , lp in decreasing
order.
The CPCA loading matrix is the matrix Pp,k which contains the first k
columns of P .

The eigenvalues lj equal

lj = var{p′
j(x1 − x̄),p′

j(x2 − x̄), . . . ,p′
j(xn − x̄)} .
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Principal component analysis Classical PCA

Classical PCA

To select the number of principal components, one typically looks at

the scree plot, which is a plot of the eigenvalues (in decreasing order)

the fraction of the total variance explained by the k first principal
components:

∑k

j=1 lj
∑p

j=1 lj

which is often required to be at least 80%, or 90%,...
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Principal component analysis Classical PCA

Equivariance

When the variance of the original variables differs a lot between variables,
it is recommended to first standardize the variables (otherwise the first
principal components will be dominated by the variables with largest
variance). When the variables are standardized by dividing them by their
standard deviation, CPCA comes down to decomposing the correlation

matrix of the data, instead of the covariance matrix.

When we apply a robust PCA method, we will standardize the variables by
dividing them by the MAD or another robust scale estimator.

As PCA is sensitive to standardization of the variables, it is NOT affine
equivariant. PCA is however orthogonally equivariant: when the data
are rotated or reflected, the center and the principal components are
rotated/reflected accordingly.

Consequently, any robust PCA method only needs to be orthogonally
equivariant. This allows us e.g. to use the L1-median as robust estimate
of the center.
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Principal component analysis Outlier detection in PCA

Outlier detection in PCA

1 Classical PCA

2 Outlier detection in PCA

3 Robust PCA based on a robust covariance estimator

4 Robust PCA based on projection pursuit

5 Spherical robust PCA

6 ROBPCA, based on projection pursuit and the MCD

7 Robust PCA for skewed data
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Principal component analysis Outlier detection in PCA

Outlier detection in PCA

Any PCA method will result in an estimate of the center µ̂, a loading matrix
Pp,k with normalized and orthogonal principal components, and a diagonal
matrix of eigenvalues Lk,k.

The orthogonal projection of each observation on the PCA subspace is denoted
as x̂i ∈ R

p. It is computed as

x̂i = µ̂+ Pp,kti = µ̂+ Pp,k(P
′)k,p(xi − µ̂)

Note that (P ′)k,pPp,k = Ik because the principal components are normalized
and orthogonal, but Pp,k(P

′)k,p 6= Ip (unless k = p).

We can then consider the orthogonal distance of each observation to the
k-dimensional subspace:

ODi,k = ‖xi − x̂i‖ = ‖xi − µ̂− Pp,kti‖
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Principal component analysis Outlier detection in PCA

Outlier detection in PCA

To detect outliers with respect to the estimated PCA model, we can identify
observations which are outlying

relative to the PCA subspace. We can measure this by computing the
orthogonal distance to the PCA subspace.

within the PCA subspace. That is, their projections are outliers in the
subspace. We can measure this by computing a robust distance in the
k-dimensional PCA subspace. This distance only uses the scores, hence
it is called the score distance.
Since the scores are centered, and their variability is estimated by the
eigenvalues contained in the Lk,k matrix, the score distance is given by:

SDi,k =
√

t′iL
−1
k,kti =

√

√

√

√

k
∑

j=1

t2ij
lj
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Principal component analysis Outlier detection in PCA

Outlier map

We can distinguish three types of PCA-outliers:

(1) good PCA leverage points have an outlying score distance, but a regular
orthogonal distance.

1

2
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Principal component analysis Outlier detection in PCA

Outlier map

(2) bad PCA leverage points have an outlying score distance AND an outlying
orthogonal distance.

5

4

x

x
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Principal component analysis Outlier detection in PCA

Outlier map

(3) orthogonal outliers only have an outlying orthogonal distance.

3

x
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Principal component analysis Outlier detection in PCA

Outlier map

The PCA outlier map displays the orthogonal distances versus the score distances:
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For each type of distance, cut-off values are available to flag outliers
(Hubert et al., 2005).
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Principal component analysis Robust PCA based on a robust covariance estimator

Robust PCA based on a robust covariance estimator

1 Classical PCA

2 Outlier detection in PCA

3 Robust PCA based on a robust covariance estimator

4 Robust PCA based on projection pursuit

5 Spherical robust PCA

6 ROBPCA, based on projection pursuit and the MCD

7 Robust PCA for skewed data

Mia Hubert, Peter Rousseeuw, Stefan Van Aelst Session 5: Robust PCA December 6–7, 2016 p. 16



Principal component analysis Robust PCA based on a robust covariance estimator

Robust PCA based on a robust covariance estimator

General idea:

Replace the covariance matrix Sn of X by a robust covariance estimate
Σ̂ such as the MCD, multivariate S, or MM-estimator.

The robust center corresponds to the robust location estimate
associated with Σ̂.

The k robust eigenvalues then correspond to the k largest eigenvalues
of Σ̂.

Take the k corresponding eigenvectors.

This approach can only be used when n > 2p hence not for high-dimensional data.
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Principal component analysis Robust PCA based on a robust covariance estimator

Robust covariance-based PCA: Example 1

Example 1: Animals data set (n = 28, p = 2).

The ellipse is the MCD tolerance ellipse. The red line is the first eigenvector of
the MCD covariance matrix. This eigenvector corresponds to the main axis of
the tolerance ellipse.

The dotted blue line is the first classical eigenvector.
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Principal component analysis Robust PCA based on a robust covariance estimator

Robust covariance-based PCA: Example 2

Example 2: Hawkins-Bradu-Kass data set (n = 75, p = 4).
This is an artificial data set with two groups of outliers: observations 1-10
and 11-14. We apply classical PCA and robust PCA based on the MCD
estimator with 50% breakdown value. This yields the following scree plots:
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The first classical eigenvector already explains 96.5% of the total classical
variance. The robust analysis explains 63% of the total variability when k = 2
and 93% when k = 3.
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Principal component analysis Robust PCA based on a robust covariance estimator

Robust covariance-based PCA: Example 2

When we select all k = 4 principal components, we can look at the resulting
score distances only:
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Principal component analysis Robust PCA based on a robust covariance estimator

Robust covariance-based PCA: Example 2

Let us plot the first two scores:
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For CPCA always t̄ = 0, but here (0,0) is not at the center of the regular
observations.
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Principal component analysis Robust PCA based on a robust covariance estimator

Robust covariance-based PCA: Example 2

When we select only k = 2 principal components, we can also look at the
orthogonal distances:

0 1 2 3 4 5

0
1

2
3

4
5

Classical PCA

Score distance

O
rt

h
o

g
o

n
a

l 
d

is
ta

n
c
e

11

12

14

12

11

14

0 5 10 15 20 25 30

0
5

1
0

1
5

Robust PCA

Score distance

O
rt

h
o

g
o

n
a

l 
d

is
ta

n
c
e

4103

12

13

14

Mia Hubert, Peter Rousseeuw, Stefan Van Aelst Session 5: Robust PCA December 6–7, 2016 p. 22



Principal component analysis Robust PCA based on a robust covariance estimator

Robust covariance-based PCA

Code for analyzing this data set in R:

> library(rrcov)

> data(hbk)

> pca.hbk50 <- PcaCov(hbk) # uses MCD with alpha = 0.5

> screeplot(pca.hbk50,main="HBK: MCD")

> plot(pca.hbk50)

> scores.kbk50 <- getScores(pca.hbk50)

> plot(scores.hbk50[,1],scores.hbk50[,2])

> getLoadings(pca.hbk50)

> getEigenvalues(pca.hbk50)
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Principal component analysis Robust PCA based on projection pursuit

Robust PCA based on projection pursuit

1 Classical PCA

2 Outlier detection in PCA

3 Robust PCA based on a robust covariance estimator

4 Robust PCA based on projection pursuit

5 Spherical robust PCA

6 ROBPCA, based on projection pursuit and the MCD

7 Robust PCA for skewed data
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Principal component analysis Robust PCA based on projection pursuit

Robust PCA based on projection pursuit

Look for directions p such that the data projected on them have the largest
spread, but now use a robust measure of univariate spread, e.g. the Qn estimator.

Start by robustly estimating the center of the data, e.g. by the L1 median.
This yields µ̂.

Then search for the k directions {p1, ...,pk} characterized by:

pj+1 = argmax
||p||=1,p⊥p

1
,...,p⊥pj

Qn{p
′(x1 − µ̂),p′(x2 − µ̂), . . . ,p′(xn − µ̂)}

The k robust ‘eigenvectors’ then correspond to {p1, ...,pk}.

The k robust ‘eigenvalues’ lj then correspond to

lj = (Qn{p
′
j(x1 − µ̂),p′

j(x2 − µ̂), . . . ,p′
j(xn − µ̂)})2 .

The projection pursuit (PP) approach was developed by Li and Chen (1985),
Hubert et al. (2002), and Croux and Ruiz-Gazen (2005).
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Principal component analysis Robust PCA based on projection pursuit

Robust PCA based on projection pursuit

Some advantages of the PP approach:

It can be used when p > n as it projects the data on lines.

It is performed sequentially and can be stopped whenever sufficiently many
components are obtained.

The solutions are nested: any j-dimensional PCA subspace is a subspace
of all higher-dimensional PCA subspaces found later.

Fast algorithms are available for its computation:
◮ R: the function PcaGrid in the rrcov package.

The function PcaProj uses another algorithm.
◮ Matlab: the function rapca in LIBRA.
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Principal component analysis Robust PCA based on projection pursuit

Robust PP-based PCA: Bus example

Example: the bus data (p = 18 shape features extracted from vehicle silhouettes,
n = 218). One variable has zero MAD and is removed, hence p = 17.

We standardize the data, and apply the projection-based PCA with Qn as scale
estimator. Then 92% of the variability is explained by k = 5 components:

> pcagrid <- PcaGrid(bus2,method="qn")

> screeplot(pcagrid,main="Projection-based PCA")

> load.grid=getLoadings(pcagrid)

> eigenv.grid=getEigenvalues(pcagrid)

> cumsum(eigenv.grid)/sum(eigenv.grid)

[1] 0.4418105 0.6475868 0.7938430 0.8635211 0.9241256 0.9544322

[7] 0.9692368 0.9781212 0.9841466 0.9891732 0.9925678 0.9955517

[13] 0.9969762 0.9982615 0.9994451 0.9997683 1.0000000
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Principal component analysis Robust PCA based on projection pursuit

Robust PP-based PCA: Bus example

Outlier maps of CPCA and robust PCA (both with k = 5):
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The extreme bad leverage points found by robust PCA are masked as good
leverage points by CPCA.
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Principal component analysis Robust PCA based on projection pursuit

Robust PP-based PCA: Bus example

Comparison of the loadings:
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The first CPCA component is highly influenced by the 7th and 11th variable in
the data set. The second CPCA component is influenced by the 6th variable in
the data set. These three variables all have many outliers.
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Principal component analysis Spherical PCA

Spherical robust PCA

1 Classical PCA

2 Outlier detection in PCA

3 Robust PCA based on a robust covariance estimator

4 Robust PCA based on projection pursuit

5 Spherical robust PCA

6 ROBPCA, based on projection pursuit and the MCD

7 Robust PCA for skewed data
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Principal component analysis Spherical PCA

Spherical PCA

Introduced by Locantore et al. (1999).

The data are centered by the L1-median, denoted as µ̂.

The data are projected on the unit sphere with center µ̂.

The robust eigenvectors are computed as the dominant eigenvectors
of the covariance matrix of these projected data points, i.e. the
eigenvectors of the sign covariance matrix

Σ̂ =
1

n− 1

n
∑

i=1

(xi − µ̂)

‖xi − µ̂‖

(xi − µ̂)′

‖xi − µ̂‖

with the largest eigenvalues.

These eigenvalues are not consistent, but they can be replaced by a
robust scale2 of the original data projected on each eigenvector.
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Principal component analysis Spherical PCA

Spherical PCA: Bus example

> pca.sphere <- PcaLocantore(bus2,k=5)

> plot(pca.sphere,main="Spherical PCA")
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Principal component analysis ROBPCA

ROBPCA, based on projection pursuit and the MCD

1 Classical PCA

2 Outlier detection in PCA

3 Robust PCA based on a robust covariance estimator

4 Robust PCA based on projection pursuit
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6 ROBPCA, based on projection pursuit and the MCD

7 Robust PCA for skewed data
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Principal component analysis ROBPCA

ROBPCA, based on projection pursuit and the MCD

Main steps (Hubert, Rousseeuw and Vanden Branden, 2005):

1 Find the h < n ‘least outlying’ data points, with roughly n/2 < h < n.
For this an orthogonally invariant measure of outlyingness is used,
inspired by the Stahel-Donoho outlyingness (SDO):

SDO(xi) = max
v∈B

|x′
iv − µ̂mcd(x

′
jv)|

ŝmcd(x′
jv)

with µ̂mcd and ŝmcd the univariate MCD estimators of location and scale.
The set B contains 250 directions through two data points, randomly
drawn from the data.

2 Set Sh the covariance matrix of the h points with smallest outlyingness.
The data are then projected on the k-dimensional subspace spanned by
the k dominant eigenvectors of Sh.

3 The location vector and scatter matrix of the projected data are computed
with the reweighted MCD estimator. The spectral decomposition of this
covariance matrix yields the robust principal components (and eigenvalues).
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Principal component analysis ROBPCA

ROBPCA: Bus example

> pcaROBPCA <- PcaHubert(bus2, k=5, mcd=FALSE, alpha=0.5)

> plot(pcaROBPCA)
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Principal component analysis ROBPCA

ROBPCA: Glass example

Glass data: n = 180 archaeological glass samples (objects) whose spectra have
p = 750 wavelengths (variables). We only show 500.
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Principal component analysis ROBPCA

ROBPCA: Glass example

The first 3 basis vectors (“loadings”) of classical PCA:
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With classical PCA the second and third peaks are mixed up.
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Principal component analysis ROBPCA

ROBPCA: Glass example

Outlier map from classical PCA:
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There would appear to be only mild orthogonal outliers.
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Principal component analysis ROBPCA

ROBPCA: Glass example

The first 3 basis vectors (“loadings”) of robust PCA:
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ROBPCA keeps the peaks more separate.
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Principal component analysis ROBPCA

ROBPCA: Glass example

Outlier map from ROBPCA:
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Now we also see bad PCA leverage points!
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Principal component analysis ROBPCA

ROBPCA: Glass example

What has caused the outliers in the glass data?

The window of the detector system was cleaned before the last 38 spectra
were measured ⇒ less radiation was absorbed, hence more was detected.

Observations 57–63 and 74–76 are samples with a large concentration of
calcium.

Observations 22, 23 and 30 are borderline cases (with a larger concentration
of phosphor).
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Principal component analysis ROBPCA

ROBPCA: Glass example

Spherical PCA did not find the bad leverage points in this example:
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Robust PCA for skewed data

1 Classical PCA

2 Outlier detection in PCA

3 Robust PCA based on a robust covariance estimator

4 Robust PCA based on projection pursuit

5 Spherical robust PCA

6 ROBPCA, based on projection pursuit and the MCD

7 Robust PCA for skewed data
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Principal component analysis Robust PCA for skewed data

Adjusted outlyingness

The Stahel-Donoho outlyingness (SDO) assumes symmetry!

Adjusted outlyingness

For univariate data with median M , the adjusted outlyingness is defined as:

AO
(1)
i = AO

(1)
i (xi, Xn) =

|xi −M |

(w2 −M)I[xi > M ] + (M − w1)I[xi < M ]

with w1 and w2 the lower and upper whiskers of the adjusted boxplot.

s s s ss

x1 x2

w1 w2

d1 d2

s1 s2

MQ1 Q3

✲✛ ✲✛

✲✛ ✲✛
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Adjusted outlyingness

here s1 = M − w1 and s2 = w2 −M .

AO
(1)
i (x1) = d1/s1 and AO

(1)
i (x2) = d2/s2.

Although x1 and x2 are at the same distance from the median, x1 will have
a higher adjusted outlyingness because its denominator s1 is smaller.

Skewness is thus used to estimate the scale differently on both sides of the
median.

For multivariate data, the projection pursuit idea can again be used (Brys et al.
2005; Hubert and Van der Veeken 2008):

AOi = AO(xi, Xn) = sup
a∈Rp

AO(1)(a′xi, Xna).

In practice: consider 250p directions, generated as the direction perpendicular to
the subspace spanned by p observations, randomly drawn from the data set.
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ROBPCA

Recall the main steps in the ROBPCA method:

Fix n
2 < h < n.

Apply classical PCA on the h data points with smallest SDOi and retain k
components.

Apply MCD covariance estimator in the subspace: mean and covariance of
the h points with smallest robust distance RDi.

The outlier map displays the OD versus the SD. Cutoff values for the SD
and the OD are based on parametric assumptions.
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Principal component analysis Robust PCA for skewed data

ROBPCA-AO

ROBPCA for skewed data, based on the adjusted outlyingness:

Fix n
2 < h < n.

Apply classical PCA on the h data points with smallest AOi and retain k
components.

Apply robust covariance estimator in subspace: mean and covariance matrix
of the h points with smallest AOi (recomputed in the subspace).

On outlier map: plot AOi on horizontal axis, and use adjusted boxplot
outlier rule for the AOi and the ODi.
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Principal component analysis Robust PCA for skewed data

ROBPCA-AO: Example

Consumer Expenditure Survey: 869 households and 8 variables collected by U.S.
Department of Labor

Variable Description MC p-value

EXP Total household expenditure 0.21 < 0.00001

FDHO Food consumed at home 0.17 < 0.00001

FDAW Food consumed away from home 0.32 < 0.00001

SHEL Housing and household equipment 0.22 < 0.00001

TELE Telephone services 0.33 < 0.00001

CLOT Clothing 0.27 < 0.00001

HEAL Health care 0.24 < 0.00001

ENT Entertainment 0.37 < 0.00001
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Principal component analysis Robust PCA for skewed data

ROBPCA-AO: Consumer Expenditure Survey

We retained 5 components (88% explained variance)

ROBPCA (198 observations flagged as outlier)
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ROBPCA − AO

ROBPCA-AO flags only 24 observations.
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