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Outline of the course

1. General notions of robustness

2. Robustness for univariate data

3. Robust multivariate methods

4. Robust regression

5. Robust principal component analysis

6. Inference

7. Multivariate and functional depth

8. High dimensional data and sparsity

9. Cellwise outliers
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Motivation

Contamination types

We want to analyze a data matrix X with n rows (cases) and d > 1 columns
(variables). But the data may contain outliers.

The usual rowwise contamination model of Tukey (1960), Huber (1964),...
assumes that some rows xi have been replaced by arbitrary rows.

Such outlying rows may be cases belonging to a different population.
Many robust and equivariant estimators of covariance, regression, PCA,...
were devised for this situation. They downweight or remove outlying rows.
These methods all require at least 50% of clean rows.

The cellwise contamination model of Alqallaf, Van Aelst, Yohai and Zamar
(2009 AOS) assumes that some cells xij have been replaced.

In that case downweighting/dropping an entire row loses a lot of information.
For high d it is even possible that every row contains an outlying cell!
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Motivation
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But how can we detect the outlying cells? Agostinelli, Leung, Yohai and Zamar
(2015 Test) consider each column (variable) separately.
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Motivation

Bivariate example
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Which cell is outlying: x4,1 or x4,2 ?
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Algorithm DetectDeviatingCells

Algorithm DetectDeviatingCells

The R-code is available from http://wis.kuleuven.be/stat/robust/software
as well as a Matlab implementation in LIBRA.

Step 0: preprocessing. Check that the variables are roughly continuous,
and temporarily set aside dummy variables.

It is okay when the data contain some missing values, but also set aside
columns and rows with over 25% of NA’s.

Verify that each remaining variable is approximately gaussian in its center, e.g.
with QQ plots. If not, it is recommended to transform that variable so that
the bulk of the data becomes roughly gaussian, e.g. by a robust version of the
Box-Cox or Yeo-Johnson transformation.
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Algorithm DetectDeviatingCells

Step 1: standardization. For each column j of X we estimate

mj = robLoci(xij) and sj = robScalei(xij −mj)

where robLoc is a robust estimator of location (such as the sample median)
and robScale is a robust estimator of scale about zero.
Next, we standardize X to Z by zij = (xij −mj)/sj .

Step 2: univariate outlier detection. We define a new matrix U

with entries uij = zij except when

|zij | > c

in which case we set uij = NA (missing). The cutoff value c is taken as

c =
√

χ2

1,p

where the probability p is 99% by default.
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Algorithm DetectDeviatingCells

Step 3: bivariate relations. For any two columns h 6= j we compute

corjh = robCorri(uij , uih)

where robCorr is a robust correlation measure.

We only use the relation between variables j and h when

|corjh| > corrlim

in which corrlim = 0.5 by default. Variables j satisfying this for some h 6= j
will be called connected. The others are called standalone variables.

For the pairs (j, h) with |corjh| > corrlim we also compute

bjh = robSlopei(uij |uih)

where robSlope computes the slope of a robust no-intercept regression line
that predicts variable j from variable h.
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Algorithm DetectDeviatingCells

Step 4: predicted values. Next we compute predicted values ẑij for all cells.
For each variable j we consider the set Hj consisting of all variables h with
|corjh| > corrlim, including j itself. For all i = 1, . . . , n we then set

ẑij =

∑

h wjh bjh uih
∑

h wjh

where wjh = |corjh|. Other choices are possible, such as a weighted median.

Step 5: deshrinkage. Computing ẑij often shrinks the scale of the entries,
which is undesirable. To counteract the shrinkage we replace ẑij by

ẑij robSlopei′(zi′j |ẑi′j)

for all connected variables j.
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Algorithm DetectDeviatingCells

Step 6: flagging cellwise outliers. Compute the standardized cell residuals

rij =
zij − ẑij

robScalei′(zi′j − ẑi′j)
.

In each column j we then flag all cells with |rij | > c as cellwise outliers.

Next we assemble the ‘imputed’ matrix Zimp given by

(Zimp)ij =















ẑij if zij was flagged or NA

zij otherwise.
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Algorithm DetectDeviatingCells

Step 7: flagging rowwise outliers. The method can also flag some outlying
rows i based on the standardized cell residuals rij .
For multivariate gaussian data without outliers we have rij ≈ N(0, 1) so the
cdf of r2ij is approximately the cdf F of χ2

1
. This leads us to the criterion

Ti =
d
ave
j=1

F (r2ij) .

We then robustly standardize the Ti and flag the rows i for which the

standardized Ti exceeds the cutoff
√

χ2

1,p.

Note that when row i has an unusually large Ti this doesn’t ‘prove’ that i is a
member of a different population, but at least it is worth looking into.

Also note that although the Ti can flag some rowwise outliers, there are types
of rowwise outliers that it may not detect. Therefore, it is recommended to
use rowwise robust methods in subsequent analyses of the data.
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Algorithm DetectDeviatingCells

Step 8: unstandardize. Turn the imputed matrix Zimp into an imputed matrix
Ximp by undoing the standardization. The output of DetectDeviatingCells is
Ximp together with the list of cells and rows flagged as outlying.

DetectDeviatingCells does not require over 50% of clean rows!
It is equivariant for translations, for diagonal linear transformations, and for
permuting rows and columns, but not for general linear transformations.

As a byproduct, DetectDeviatingCells imputes all NA’s in the data.
This is far less efficient than the EM algorithm when the data are outlier-free,
but it is more robust against cellwise outliers.

Note that DetectDeviatingCells starts from relations between 2 variables.
If instead we would fit a q-dimensional model to each set of q > 2 variables by
a rowwise robust method, the computation time would explode and those fits
would be less robust due to cellwise outlier propagation. The current algorithm
runs in O(nd2) time and O(nd) space, and speedups are possible.

Mia Hubert, Peter Rousseeuw, Stefan Van Aelst Session 9: Cellwise outliers December 6–7, 2016 p. 12



Examples Top Gear

Example: library(robustHD); data(TopGear)
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By column
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Examples Philips

Example: Philips production line, n=677 parts, d=9 characteristics. Robust
distances from FastMCD, and transposed cell map with blocks of 15 products.
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Examples Mortality

Example: mortality by age for males in France, from 1816 to 2010 (from
www.mortality.org)
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Examples Mortality
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Examples Glass

Example: n=180 archeological glass samples, spectra with d=750 wavelengths,
so more dimensions than objects!
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Examples Glass

After running the algorithm DetectDeviatingCells:

1. Ideally, the user looks at the anomalous cells and whether their values are
higher or lower than predicted, and makes sense of what is going on.
This may lead to a better understanding of the data pattern, to changes in
the way the data are collected/measured, to dropping certain rows or
columns, to transforming variables, to changing the model,...

2. If the data set is too large for visual inspection of the results or the analysis
is automated, the anomalous cells can be set to missing after which the
data set is analyzed by a method appropriate for incomplete data.

3. If no such method is available, one can analyze the imputed data set Ximp

produced by DetectDeviatingCells, which has no missings.

In 2. and 3. one can drop the flagged rows before taking the step. If that step
is carried out by a sparse method such as the Lasso (Tibshirani 1996,
Städler-Stekhoven-Bühlmann 2014) or another form of variable selection:
look more closely at the deviating cells in the variables that were selected.
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Simulation

Comparison with existing method

We compare with the univariate Gervini-Yohai (GY) filter (2002 AOS).

The uncontaminated data are gaussian with mean zero and a covariance
matrix with unit diagonal. We use two types of correlation matrices:

ALYZ: the random correlation matrices generated by Agostinelli, Leung,
Yohai and Zamar (2015 Test). These yield relatively low correlations.

A09: the true correlation matrix is generated as

ρjh = (−0.9)|j−h| .

The two types of contamination are generated as follows:

cells: A random subset of the nd cells are replaced by the constant γ.

rows: compute the last eigenvector v of the true covariance matrix C.
Rescale v to the typical size of a data point, by making

MD2

C(v) = E[Y 2] = d where Y 2 ∼ χ2

d .

Then add point contamination at γv.
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Simulation

ALYZ model, 10% cells, d=20 A09 model, 10% cells, d=20
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Simulation

ALYZ model, 10% cells, d=20 A09 model, 10% cells, d=20
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ALYZ model, 10% rows, d=20 A09 model, 10% rows, d=20
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Simulation

If the true correlations are given by ρjh = 0.99|j−h| then the rows of X look like
autocorrelated time series.
Compare DetectDeviatingCells imputation to median imputation by column:
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j

X

By column only DDC
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Multivariate location and scatter

Multivariate location and scatter

The 2SGS method (Agostinelli, Leung, Yohai and Zamar 2015) consists of:

1 Apply the GY filter to the columns of X and set the flagged cells to NA

2 Apply the GSE estimator of Danilov, Yohai and Zamar (2012 JASA)

to this incomplete data set, yielding µ̂ and Σ̂ .

Our version replaces GY in step 1 by DetectDeviatingCells. When an entire row
is flagged, we remove it.

Removing a row will count as removing all of its d cells.

We also include the HSD estimator of Van Aelst et al (2012).

Measure how far Σ̂ is from the true Σ by

LRT = trace(Σ̂Σ
−1)− log(det(Σ̂Σ

−1)− d .
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Multivariate location and scatter

ALYZ, 10% cells, d=10 A09, 10% cells, d=10
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Multivariate location and scatter

Three-step versions

Note that the default GSE estimator starts by computing a version of the
minimum volume ellipsoid (MVE) suitable for incomplete data, which is rather
time-consuming.

Therefore Agostinelli, Leung, Yohai and Zamar (Test 2015, rejoinder) also
proposed Fast2SGS:

1 Apply the GY filter to the columns of X and set the flagged cells to NA.

2 Apply the MVE S estimator (an S-estimator starting from MVE) to the
complete data set obtained by imputing the NA’s by the median of their
column;

3 Apply GSE to the data set with the NA’s but now starting from the µ̂

and Σ̂ obtained in step 2.

Our version again replaces GY in step 1 by DetectDeviatingCells.
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Multivariate location and scatter

Another approach to estimating µ and Σ is the SnipEM method of Farcomeni
(2014 Technometrics). This searches for the subset of cells such that ‘snipping’
them (setting them to NA) and then running the EM algorithm on this
incomplete data set yields the highest partial likelihood.

The SnipEM algorithm requires a good initial subset.

Agostinelli et al (2015) found that SnipEM works fairly well for cell contamination
but is insufficiently robust for row contamination.

Therefore we take the following steps:
1 Apply DetectDeviatingCells to X with its imputation of the flagged cells and

remove the flagged rows.
2 Apply the MVE S estimator to this modified data set and flag the outlying

rows it detects too.
3 Apply SnipEM to the data set without the rows flagged in steps 1 and 2.

As initial subset we use the cells flagged in step 1.
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Multivariate location and scatter

ALYZ, 10% cells, d=10 A09, 10% cells, d=10
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Regression

Regression

Leung, Zhang and Zamar (2016 CSDA) proposed the 3S regression method:

1 Apply a generalization of the GY filter to the columns of X (not y)
and set the flagged cells to NA

2 Apply GSE to the incomplete data set [X|y], yielding µ̂ and Σ̂

3 Partitioning µ̂ and Σ̂ as

µ̂ =









µ̂x

µ̂y









and Σ̂ =









Σ̂xx Σ̂xy

Σ̂yx Σ̂yy









yields the slope and intercept estimates

β̂ = Σ̂
−1

xx Σ̂xy

α̂ = µ̂y − β̂
t
µ̂x .

This is again robust to both cellwise and rowwise outliers.
Our version replaces step 1 by DetectDeviatingCells.
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Regression

Average MSE(β̂, α̂) under ALYZ with cell and row contamination
(d=15, n=300):
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Under ALYZ, the average lengths of the confidence intervals around the
coefficients is similar to those found by Leung-Zhang-Zamar, for the same
contamination settings.

The same holds for the average coverage rates of those intervals.
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Conclusions

Conclusions

Our approach turns high dimensionality (usually considered a curse) into
an advantage, as having more variables may improve the accuracy of the
predicted cells.

DetectDeviatingCells and methods starting from it perform about as well as
the robust methods of Zamar et al (GY filter, 2SGS, Fast2SGS, 3S regression)
when the correlations between the variables are small to moderate, and better
when there are higher correlations.
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Conclusions
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